Help to wounded soldiers

Welcome to the Future of Emergency Medical Care!

http://goo.gl/X86HWd

US Marines of the 1st Division line up for a joined prayer at their base outside Fallujah, Iraq, Nov. 6 , 2004. Four years into the Iraq war, President Bush is staring down a Congress in revolt. (AP Photo/Anja Niedringhaus)

The U.S. military is reportedly looking into an idea that’s always seemed a little more like something straight out of a science-fiction novel.

The military is reportedly in talks with the University of Nevada to develop 3-D printed “twins” of American soldiers. The concept would require troops’ bodies to be scanned and images stored. Those images, in turn, would assist doctors and surgeons in developing 3-D printed prosthetic body parts should the soldiers ever become wounded in battle, according to 3DPrint.com.

“The idea is to image someone when they are in a healthy state so that the data is available if it’s needed at a later point,” James Mah, a clinical professor at the University of Nevada said.

“We have soldiers who get injured. They lose limbs and other tissues and it’s a challenge to reconstruct them in the field. but if they are imaged beforehand, you can send that over the internet and have a 3D printer in the field to produce the bone,” Mah said.

A similar method is already used among some in the medical field. Medical students, for example, use virtual operating tables that allow them to dissect and operate without ever needed an actual human body in front of them.

Image source: 3Dprint.com

The tables are created in much the same way as what the military is reportedly looking to do for wounded veterans. With an X-ray, MRI or ultrasound, an exact replica of a human body can be engraved into the table, thus creating a virtual cadaver.

But this isn’t an entirely new innovation as doctors have been developing 3-D printed body parts for a few years now. In 2013, doctors were able to create a virtual windpipe for a baby born with a rare, life-threatening condition. Another example happened in 2012 when doctors used the technology to give a 2-year-old girl motion back in her arms.

TheBlaze reached out to a Pentagon spokesman asking for more information on existing plans, but no immediate response was received.

THEBLAZE.COM
by  | February 19, 2015 11:59pm

3D printed food for soldiers!

Feeling Hungry? Check out what’s on the menu for the future soldiers of America!

http://www.npr.org/…/361187352/army-eyes-3d-printed-food-fo…

Army researchers will try to find ways to 3-D print nutritious food with less heavy packaging than the current military meals.

Army scientists have spent decades concocting meals that last without refrigeration and survive high-altitude airdrops. And now, the Army is eyeing a new form of cooking: 3-D printing! Yes, food that comes fresh out of a printer, for our troops.

Lauren Oleksyk, a food technologist leading the team at the Army’s Natick research center, lays out the vision.

Imagine soldiers who are strapped, head to toe, with sensors that measure if they’re high or low in potassium or cholesterol.

“We envision to have a 3-D printer that is interfaced with the soldier. And that sensor can deliver information to the computer software,” Oleksyk says. “And then they would be able to have either powdered or liquid matrices that are very nutrient dense, that they have on demand that they can take and eat immediately to fill that need.”

“Liquid matrices” that are nutrient “dense.” And you print them?!

You read that right.

The Army is turning to 3-D printers for many purposes, including a nutrition project — to stamp out the equivalent of PowerBars, but personalized for the battlefield.

The Department of Defense has just approved research funding. And it’s going to take a lot of research. While regular printers put ink on paper, 3-D printers blast liquids and powders into complex shapes. But it’s not clear if printers could mold a solid like carrots — and what would happen to the food’s nutritional value.

“There’s synthetic types of meats, there’s real beef, there’s real meat,” Oleksyk says. “And we would see what that does in the printing process to that protein, whether it’s animal based or plant based.” She’s talking about this research with the MIT Lincoln Lab and NASA too.

Of course, the 3-D food will have to pass a taste test, just like the current rations — which are called MREs, or meals ready to eat.

Oleksyk mailed me a bunch to sample. I try a jalapeno pepper jack-flavored patty. It is full of flavor, and also very processed, like someone had to jam a lot into a little patty.

The kitchens that make this patty use flaming hot ovens and extreme heat to sterilize it. Oleksyk says if 3-D printers could use less heat, the patty could also taste better — less like a compact muscle and more like fresh ground meat.

“We hope so! It’s not being done, so it’s something that we will investigate in our project,” she says.

In the food world, 3-D printing is just getting started — and it’s a sweet start, literally.

Liz von Hasseln is giving me an online video tour of The Sugar Lab, a 3-D printing outfit in Los Angeles that turns sugar into sweet candy sculptures for wedding cakes and fancy cocktails. The startup was acquired by 3D Systems, which is sharing its technology with the military in informal talks.

She points to a printer that’s the size of an industrial photocopier and explains, “What the printer does is, a lot like making frosting in a bowl, it basically adds the wet ingredients of the frosting to the dry ingredients very, very precisely in very fine layers.”

Von Hasseln sent me some samples to try — and they’re very different from the military food. I unwrap a delicate sphere that’s a little bigger than a lollipop. It tastes like Sweet Tarts.

It’s hard for me to imagine this technology producing anything nutritious or durable. But von Hasseln husband, Kyle, co-founder of The Sugar Lab, says the printer’s ability to vary textures — to make food soft or hard — would be critical for soldiers who are injured or on the move.

“Dialing in the exact density of food could mean that they could eat more easily and because of that, as a consequence, they might even eat more or be healthier,” he says.

3-D printed food sounds sci-fi. But according to military scientists and 3-D experts, these meals for soldiers are on track to be ready by 2025.

References:

3D printed military grade drones

The future US military drones look like they’re going to have a completely 3D-printed body and an Android phone for a brain. All for just $2500 a pop, with a wait of just over a day!

http://www.wired.co.uk/…/ar…/2014-09/17/military-grade-drone

We have 3D printed keysguns and shoes — now a research team at the University of Virginia has created a 3D printed UAV drone for the Department of Defense.

In the works for three years, the aircraft, no bigger than a remote-controlled plane, can carry a 1.5-pound payload. If it crashes or needs a design tweak for a new mission, another one can be printed out in a little more than a day, for just $2,500 (£1533). It’s made with off-the-shelf parts and has an Android phone for a brain.

“We weren’t sure you could make anything lightweight and strong enough to fly,” says David Sheffler, who led the project. Sheffler is a former engineer for Pratt & Whitney and Rolls-Royce who now teaches at the university. After he created a 3D printed jet engine in one of his classes, the MITRE Corporation, a DoD contractor, asked him to create a 3D printed UAV that could be easily modified and built with readily available parts.

The first prototype, the orange and blue model seen in the video above, was based on a conventional radio-controlled (RC) aircraft made of balsa wood, which is much lighter and stronger than the ABS plastic used in the university’s 3D printers. The same plane made of plastic would have weighed five times as much as the wood version. “You’re printing out of a material that’s really not well-suited to making an airplane,” Sheffler explains. On top of that, the way 3D printing works –building things in layers — led to structural weaknesses in the aircraft.

To account for those downsides, Sheffler’s team reworked the design. They settled on a “flying wing” design, in which the whole aircraft is basically one big wing, and called it the Razor. The latest (third) prototype is made of nine printed parts that click together like Lego. The centre of the plane is all one piece, with a removable hatch that offers access the inner cargo bay. All of the electronics live in there, including a Google Nexus 5 smartphone running a custom-designed avionics app that controls the plane, and an RC-plane autopilot that manages the control surfaces with input from the phone. The Razor’s wing structure is one piece, with an aileron, winglets, and mount for the small jet engine that clip on.

The aircraft, with a four-foot wingspan, weighs just 1.8 pounds. Loaded with all the electronics gear, it comes in at just under 6 pounds. That lets it fly at 40 mph for as long as 45 minutes, though the team’s working to get that up to an hour. An earlier prototype could top 100 mph, and the team believes the plane could hit 120 mph, at the cost of a very quickly drained battery.

It can carry 1.5 pounds, so attaching a camera to it would be no problem. The batteries take two hours to fully charge and are easily swapped out, so if you’ve got three or four packs on hand, the Razor can be in the air nearly continuously. The plane can be controlled from up to a mile away, or fly on its own using preloaded GPS waypoints to navigate. The team uses the Nexus smartphone’s 4G LTE as well, meaning commands could be sent from much farther away, though FAA guidelines have kept them from long-distance testing.

Here’s where the 3D printing really comes in handy: The design can be modified — and reprinted — easily, to be bigger or smaller, carry a sensor or a camera, or fly slower or faster. The plane can be made in 31 hours, with materials that cost $800 (£490.75). Electronics (like the tablet-based ground station) push the price to about $2,500 (£1,533). That’s so cheap, it’s effectively disposable, especially since you can make another one anywhere you can put a 3D printer. If one version is flawed or destroyed, you can just crank out another.

Though the team’s research contract has run out, they’re hoping to get another one next year. If Sheffler’s right about how the technology will evolve, MITRE and the DoD would be wise to extend the partnership. “3D printing is at the phase where personal computers were in the 1980s,” Sheffler says. “The technology is almost unbounded.”

“This program was really tasked with showing what is possible.”

WIRED.CO.UK
by JORDAN GOLSON | 17 SEPTEMBER 14