Tattoos to 3D printing!

http://www.theguardian.com/healthcare-network/2015/sep/04/tattoos-to-3d-printing-five-inventions-that-will-revolutionise-healthcare

contact lens

Tattoos to 3D printing: five inventions that will revolutionise healthcare

Most people know they are sick or their health is at risk because of symptoms – pain, temperature, swelling, rash etc. These are the alarm bells that drive people to doctors. However, new epidemics like obesity and type 2 diabetes can start causing damage a long time before symptoms appear, and no alarms go off.

Today we can meet these challenges with new allies. Beyond the health and fitness uses, the new world of wearables (external surface sensors) and, in time, digestibles (nanoparticle sensors that can transmit information from within), offer the opportunity to restore control back to us. Advances in biotechnology as well as material science offer us alternatives never before dreamed possible.

Google’s smart contact lens
This contact lens has an embedded sensor that measures the glucose level in your tears every second and transmits that data to a device (ie a smartphone) where it can be displayed or transmitted to a medical professional. It can also change colour if glucose levels fall below or rise above specific levels. The limiting step at the moment is powering the device. Currently it includes a small antenna which is placed between two layers of glass along with the sensor but this has to be close to a power source.

Medical tattoos
Butterfly biostamps the size of a thumbnail measure sun exposure, and a medical stamp can measure motion, temperature, heart rate and perspiration, or oxygen saturation.

There’s a new version that can be placed directly on brain tissue to monitor epileptic seizures and one that can be draped around the heart helping better detect arrhythmias and give finer control to pacemakers. The latter would use the heart’s motion to convert the energy of muscular contraction into electrical energy.

The 2025 vision is that every baby in the developing world will be tagged with several biostamps at birth. One on the wrist or ankle would replace the hospital bracelet and allow nurses to monitor the baby’s heart rate, temperature respiratory rate and oxygenation.

At UC San Diego, they have created a different type of tattoo which currently lasts on the skin for about 24 hours, applying a very mild electrical current to the skin surface for 10 minutes forcing sodium ions to migrate towards the printed electrodes. A built-in sensor then interprets the strength of the charge generated to determine a person’s overall glucose levels. Two further refinements are needed to make this ready; at present it is not connected to a numeric read out, and they are working to extend the life beyond 24 hours.

Biological 3D printing
A team at Princeton printed a bionic ear and a team at Cambridge has printed retinal cells to form complex eye tissue. But Jennifer Lewis, a biological engineering professor at Harvard, has solved the dilemma of how to print tissues with full blood supply (essential if you are going to create functional replacement organs) and has taken her team closer to being able to print a full kidney (currently the most widely transported organ). Making complete organs requires even more complex structures but with new innovations we can look to a future where damaged or worn out organs, from kidneys to hearts, could be printed to precise design specifications.

Optogenetics
Various forms of direct stimulation to the brain (implanted electrodes, vagal nerve stimulation etc) have been used in a variety of situations including depression. Now there is the possibility to use encoded genetic proteins that change in the presence of light to stimulate areas of the brain non-invasively for a particular purpose. While initial approaches used methods to genetically alter cells that could result in cell destruction limiting their practical value, the University of Chicago has recently developed an alternative which uses tiny gold nanoparticles that allow the modification of cells using low-level infrared lights and which remain intact and effective within cells over the long term without hurting or damaging nearby cells. While still in its infancy, in the next 10 years we will see new approaches and even more refined procedures of central nervous stimulation used to do everything from enhance learning to treat depression.

Real-time physiological monitoring
A low-cost device with multiple sensors that could monitor heart rate, temperature, oxygen saturation, blood pressure, respiratory rate, fluid state, and glucose could provide a comprehensive output on the body’s dynamic health. While still in phased development, the first versions of such devices exist in the US and Switzerland. Couple their sensor capabilities with analytic data fusion software and you have real-time dynamic physiological data. No longer do I need to do an artificial stress test to see how your heart behaves under strain or what is most likely to push you into diabetic crisis. Now I can see that your heart’s function was pushed to extremes at 2pm on Thursday and 5pm on Friday. With a report of your body’s reaction to exercise, increased stress at work, overeating, episodic illness, lack of sleep, you can not only assess your vulnerability but understand what patterns in your life will most likely tip you over the edge. When I get up in the morning currently I know more about the state of my car than I do about my own health. With these technologies finally that is about to change.

theguardian.com

by David Whitehouse, Chief medical officer, UST Global | Friday 4 September 2015

Advertisements

A brief history of 3D printing

http://ottawacitizen.com/news/local-news/the-evolution-of-3d-printing

A 3D printer used by a clinic in France to create skull and facial implants.

A brief history of 3D printing

On that evening, more than three decades ago, when he invented 3D printing, Chuck Hull called his wife.

She was already in her pyjamas, but he insisted that she drive to his lab to see the small, black plastic cup that he had just produced after 45 minutes of printing.

It was March 19, 1983. Hull was then an engineer working at a U.S. firm that coated furniture with a hard plastic veneer. As part of his work, he used photopolymers — acrylic-based liquids — that would solidify under ultraviolet light. Hull thought the same sort of process might be used to build a three-dimensional object from many thin layers of acrylic, hardened one after another, with targeted UV light from a laser beam.

Hull pursued his research on nights and weekends until finally sharing his eureka moment with his wife, Anntionette.

“I did it,” he told her simply.

Chuck Hull, inventor of the 3D printer

Hull took out a series of patents on his invention and went on to co-found a company, 3D Systems, that remains a leader in the field. Last year, the 75-year-old was inducted into the National Inventors Hall of Fame.

Hull’s invention launched a wave of innovation. Design engineers embraced 3D printers as the answer to their prayers: Instead of waiting weeks or months to have new parts produced, they could design them on computers and print prototypes the same day.

3D printers have since evolved and can now use all kinds of materials, including metals, ceramics, sugar, rubbers, plastics, chemicals, wax and living cells. It means designers can progress rapidly from concept to final product.

Advances in the printers’ speed, accuracy and versatility have made them attractive to researchers, profit-making firms and even do-it-yourselfers.

The cost of the machines has also dropped dramatically, which means it’s easy for home inventors to enter the field. Home Depot sells a desktop version for $1,699 while Amazon.com markets the DaVinci Junior 3D printer for $339.

The machines have been used to print shoes, jewellery, pizza, cakes, car parts, invisible braces, firearms, architectural models and fetal baby models (based on ultrasound images).

The wave of innovation triggered by the 3D printer is only now beginning to crest in the field of medicine. Researchers are racing to engineer implantable livers, kidneys and other body parts with the help of 3D printers.

In Canada, scientists are using 3D bioprinters as they work toward creating new limb joints made from a patient’s own tissue, and implantable skin for burn victims.

ottawacitizen.com

by Andrew Duffy | August 28, 2015 2:00 PM EDT

3D printed beef slices?

http://www.straitstimes.com/opinion/do-you-still-need-cows-if-you-can-3d-print-beef-slices

Do you still need cows, if you can 3D print beef slices?

Two scientists look at how Singapore is preparing to embrace two leading technologies – 3D printing and robotics.

Additive manufacturing (AM) or 3D printing, as it is more commonly known, is a term that is becoming more familiar, used not only by large corporations and institutions but also smaller enterprises and even individuals.

Simply put, 3D printing refers to processes that produce a 3D part from a computer-aided design model by adding materials successively, usually in a layer-by-layer fashion. These materials can be made of paper, plastic, metal or even organic materials such as tissue from cells.

3D printing in itself is not new. It has been used for over three decades, such as for printing out prototypes for designs or architectural works. But today, its usage has expanded beyond prototyping. Many industries and people now use 3D printing to make things they want, which include producing unmanned aerospace vehicles (UAVs) used in Aerospace and Defence.

As technology continues to develop and become more widespread, we are led to potentially discover new or more extensive benefits to society. In building and construction, the ability to print complicated design structures within a shorter time and with fewer resources would help to reduce housing shortage in countries like Singapore. Globally, this could also help disaster-struck countries to quickly rebuild affected communities.

Due to its game-changing potential, AM or 3D printing is forecast by The Economist magazine to be the third Industrial Revolution.

Today, manufacturers are already witnessing the positive impact of 3D printing technology in terms of enabling greater customisation while reducing costs and waste.

As products are manufactured on demand, this reduces tooling costs and the need to maintain a massive product inventory typical of traditional manufacturing methods.

From a business perspective, we also see companies evolving towards more flexible and cost-effective business models. Some may choose to focus solely on design and leave customers to manufacture the actual product. Conversely, smaller players can now manufacture their own products instead of relying on larger manufacturing chains. Along with lower investment costs and risks, this has opened doors and created opportunities for new entrants within the manufacturing field. These will shake up manufacturing as we know it today.

Companies that now produce spare parts or equipment for big manufacturers may find themselves squeezed out if the manufacturers find it more worthwhile to 3D print the parts themselves.

Shipping too can change, if ships carry their own 3D machines to print parts, or 3D print their own supplies, eliminating the need to stop at ports for repairs and resupplies.

Even space travel can be revolutionised: One exciting area of potential application is 3D printing in space, which can be used to produce necessities such as food as well as essential tools and spare parts necessary for extensive space missions.

Over the coming decades, 3D printing technology certainly has tremendous potential to revolutionise our next phase of development.

The promise of bioprinting – or the printing of live tissue – is immense. This potentially allows us to 3D print a new organ for transplant. Bioprinting has the eventual goal of improving the quality of life whether for transplant patients or for society at large.

It also has clear applications in food. After all, 3D printing allows us to produce meat for consumption by printing them with layers of animal tissue – without the need for animal husbandry or slaughter.

Bioprinting food will also minimise the risk of diseases such as mad cow disease or bird flu by eliminating the need to rear livestock for human consumption.

With the aim of empowering the average home user, the Blacksmith Group invented the Blacksmith Genesis, the world’s first 3D printer-cum-scanner. As compact as a home printer, the Blacksmith Genesis allows users to scan, edit and print any item up to 6,650 cubic cm in 3D easily. This user-friendly device enables users without much knowledge of 3D software to engineer their own products.

The Blacksmith Group is a spin-off from the Nanyang Technological University’s (NTU) newly established Singapore Centre for 3D Printing (SC3DP).

Supported by Singapore’s National Research Foundation, SC3DP was set up to drive research and collaboration towards growing Singapore’s 3D printing capabilities for the aerospace and defence, building and construction, marine and offshore and manufacturing industries.

Taking it one step further is 4D printing, which refers to the printing of three-dimensional materials with properties that will transform according to external or environmental stimuli, such as time, temperature or humidity.

Possible applications that would prove useful are using it to print the soles of shoes or sofas which can then be easily manipulated to fit the shapes and sizes of human bodies.

4D printing might also be useful for printing structures for transporting across dramatically different environments, such as from earth to space. In this case, imagine if we could print a piece of furniture in a compact format that can be subsequently assembled into a larger, complex structure in space.

Given the rate at which 3D printing technology is progressing, it is not difficult to envision that 50 years from now, we could be living in 3D printed houses, travelling on 3D printed airplanes, wearing 3D printed garments, consuming 3D printed food and much more.

The possibilities are limitless.

  • Professor Chua Chee Kai is the Executive Director, Singapore Centre for 3D Printing, at the School of Mechanical and Aerospace Engineering, Nanyang Technological University.

References:

straitstimes.com

http://www.straitstimes.com/opinion/do-you-still-need-cows-if-you-can-3d-print-beef-slices