3D printed parts for a car

http://www.stuff.co.nz/motoring/news/71751824/the-car-of-the-future-to-use-3d-printed-parts

Car parts could use 3D printing techniques in the future, according to BMW

The car of the future to use 3D printed parts

Car companies will soon make use of 3D printing to manufacture parts, bringing benefits in cost and strength that will improve the affordability and driving character of future vehicles, according to BMW’s head of lightweight design Florian Schek.

While most vehicle manufacturers use the advanced technology during the development and design phase to quickly create prototype parts or models, Schek believes it won’t be long before the technology is transferred into end-consumer production techniques.

He admitted that it is likely to be used on low-volume speciality vehicles first as the time needed to mass-produce parts by 3D printing is not as quick as conventional methods such as casting and forging for metals, or as affordable as plastics. But he said the rapid advances in the technology will ensure its future application is viable.

“We have that already in prototyping,” he told Drive.

“But there is definitely a future for it in mainstream production. It will come.

“I think it will take some time in high-volume production, but it is not that far away for specialist models like the i8. We can do some very interesting things with 3D printing that we cannot do with other methods and it is quite exciting about the benefits, both in terms of design and structure.”

Schek said the benefits of 3D printing structural elements – including major components such as shock absorber towers – could see improvements in weight reductions and rigidity, as the printing process could create components more intricately.

“With 3D printing we can see advantages in being able to build parts with strength where it is needed and not in places where it isn’t, and this will help improve decreasing weight. We can design the part according to the forces that are running through it, this will be a big step forward for some areas,” he told Drive during the launch of the all-new BMW 7-Series, which uses different materials in its skeleton – including steel, aluminium and carbon fibre – to reduce weight and increase overall strength.

“I can also see it eventually improving time to production in some circumstances too, because some components currently need to go through many processes to be ready for assembly whereas with 3D printing it is designed to be a finished product.”

stuff.co.nz

by ANDREW MACLEAN | 06:00, September 6 2015

Advertisements

4D printing ?

4D Printing Will Allow us to Morph a 3D Printed Object Into Any Shape!

http://goo.gl/n6XMnX

A grid was made by 4D printing.

Using a new technique known as 4D printing, researchers can print out dynamic 3D structures capable of changing their shapes over time.

Such 4D-printed items could one day be used in everything from medical implants to home appliances, scientists added.

Today’s 3D printing creates items from a wide variety of materials — plastic, ceramic, glass, metal, and even more unusual ingredients such as chocolate and living cells. The machines work by setting down layers of material just like ordinary printers lay down ink, except 3D printers can also deposit flat layers on top of each other to build 3D objects.

“Today, this technology can be found not just in industry, but [also] in households for less than $1,000,” said lead study author Dan Raviv, a mathematician at MIT. “Knowing you can print almost anything, not just 2D paper, opens a window to unlimited opportunities, where toys, household appliances and tools can be ordered online and manufactured in our living rooms.”

Now, in a further step, Raviv and his colleagues are developing 4D printing, which involves 3D printing items that are designed to change shape after they are printed. [The 10 Weirdest Things Created By 3D Printing]

“The most exciting part is the numerous applications that can emerge from this work,” Raviv told Live Science. “This is not just a cool project or an interesting solution, but something that can change the lives of many.”

In a report published online today (Dec. 18) in the journal Scientific Reports, the researchers explain how they printed 3D structures using two materials with different properties. One material was a stiff plastic, and stayed rigid, while the other was water absorbent, and could double in volume when submerged in water. The precise formula of this water-absorbent material, developed by 3D-printing company Stratasys in Eden Prairie, Minnesota, remains a secret.

The researchers printed up a square grid, measuring about 15 inches (38 centimeters) on each side. When they placed the grid in water, they found that the water-absorbent material could act like joints that stretch and fold, producing a broad range of shapes with complex geometries. For example, the researchers created a 3D-printed shape that resembled the initials “MIT” that could transform into another shape resembling the initials “SAL.”

“In the future, we imagine a wide range of applications,” Raviv said. These could include appliances that can adapt to heat and improve functionality or comfort, childcare products that can react to humidity or temperature, and clothing and footwear that will perform better by sensing the environment, he said.

In addition, 4D-printed objects could lead to novel medical implants. “Today, researchers are printing biocompatible parts to be implanted in our body,” Raviv said. “We can now generate structures that will change shape and functionality without external intervention.”

One key health-care application might be cardiac stents, tubes placed inside the heart to aid healing. “We want to print parts that can survive a lifetime inside the body if necessary,” Raviv said.

The researchers now want to create both larger and smaller 4D-printed objects. “Currently, we’ve made items a few centimeters in size,” Raviv said. “For things that go inside the body, we want to go 10 to 100 times smaller. For home appliances, we want to go 10 times larger.”

Raviv cautioned that a great deal of research is needed to improve the materials used in 4D printing. For instance, although the 4D-printed objects the researchers developed can withstand a few cycles of wetting and drying, after several dozen cycles of folding and unfolding, the materials lose their ability to change shape. The scientists said they would also like to develop materials that respond to factors other than water, such as heat and light.

LIVESCIENCE.COM
by Charles Q. Choi, Live Science Contributor   |   December 18, 2014 12:22pm ET