First 3D printed office building!

http://www.rt.com/news/270823-dubai-3d-printed-building/

Still from YouTube video by Museum Of The Future

World’s 1st 3D printed office building to glam up Dubai

An ambitious UAE plan to build the first fully functional 3D printed office building in the world has been announced in Dubai. It is being promoted as both cost effective and time saving.

Embedded image permalink

Mohamed Al Gergawi, the United Arab Emirates Minister of Cabinet Affairs and Chairman of the National Innovation Committee, said on Tuesday that Dubai plans to 3D-print a one-story “office building” of about 2,000 square feet (185 square meters) in size, Reuters reported.

“We are keen to use the latest technologies to simplify people’s lives and to serve them better. This project is part of our overall innovation strategy to create new designs and new solutions in education, healthcare and cities,” Al Gergawi said in a statement. “Our goal is to increase the happiness and wellbeing of our residents and to pioneer new solutions for the world.”

Embedded image permalink

The building, which is to be situated in the center of the coastal business hub city, will be printed layer-by-layer with a 20-foot tall printer over the course of a few weeks. Its entire interior will also be 3D printed. The technology will cut labor costs by 50-80 percent, and construction time by 50-70 percent, according to expert estimates.

“The idea of 3D printing buildings was once a dream, but today it has become a reality,” Al Gergawi added. “This building will be a testimony to the efficiency and creativity of 3D printing technology, which we believe will play a major role in reshaping construction and design sectors. We aim to take advantage of this growth by becoming a global hub for innovation and 3D printing. This is the first step of many more to come.”

Embedded image permalink

The project is a result of cooperation between Dubai and WinSun, a pioneering Chinese company that specializes in building houses with 3D printers, as well as other major firms such as Gensler, Thornton Thomasetti, and Syska Hennessy.

The cutting-edge “office” will be the temporary headquarters of the “Museum of the Future” that was announced this March and is scheduled to open in 2017.

References:

rt.com

http://www.rt.com/news/270823-dubai-3d-printed-building/

Advertisements

3D printing industry to quadruple by 2020

http://www.rt.com/business/253785-3d-printing-industry-growth/

Reuters / Pichi Chuang

Wave of future: 3D printing industry to quadruple by 2020

3D printing can produce almost everything from human stem cells to a car,and is at its most popular in the industry’s 29–year history. It has grown by 35.2 percent in 2014 and is expected to become a $20.2 billion global industry by the end of the decade.

The global industry for 3D printing, or additive manufacturing as it is sometimes called, was worth $4.1 billion last year, following a 34.9 percent growth on 2013, according to Wohlers Report 2015. The industry has experienced a compound annual growth rate of 33.8 percent over the last three years.

It’s impossible to find another industry with more than 25 years of experience that could have such kind of growth, says consultancy founder Terry Wohlers, who has been tracking the growth of the additive manufacturing industry since the 1980s.

The 3D printing technology industry began in 1986, and was worth just $295 million in 1995. The worldwide market for 3D printers, associated materials and services is expected to grow by 56 percent this year to $5.2 billion compared with $3.3 billion in 2014, according to the data from research firm Canalys.

“As we expected, the 3D printing market has grown substantially over the past few years. We have seen improving print speeds, a wider range of materials and new forms of additive manufacturing methods,” Joe Kempton, Canalys research analyst says. He pointed to the increase in vendors from Asia, which is taking on dominant existing markets, such as Germany and the US.

3D printing is a technology which allows designing objects using software and then manufacturing using a layering technique. It is a prototyping process where a real object is created from a digital 3D-model, which can be a scan of 3D images or can be drawn using computer-assisted design or simply can be downloaded from the internet. People in 3D printing usually say “If you can draw it, you can make it”.

An estimated 526 additive manufacturing (AM) systems were sold in 1995 from 15 system manufacturers located in the US, Germany, and Japan. In 2014, 49 system manufacturers in 13 countries produced and sold an estimated 12,850 industrial 3D printing systems. Last year hundreds of mostly small companies worldwide produced and sold nearly 140,000 desktop 3D printers that sell for less than $5,000 each.

Promising future

3D printing, combined with the internet, can rewrite history say experts. Now everything can be downloaded and printed at home. Additive manufacturing allows people to print real-life products and part replacements in their home or office. The only requisite is a 3D printer which allows printing the object in three dimensions, and printing materials such as plastics, waxes, ceramic, and metal. However, the process is a long one, it takes hours or even days to print a 3D model and often a tiny error can make the entire print useless. The high cost of a 3D printer is also a big drawback for the individual home user; home 3D printers today vary in price from £300 to £3,000.

READ MORE: Wi-Fi EYE: Scientists developing 3D-printed eyeballs with filters & camera

The 3D printing revolution is expected to continue and to challenge not only traditional manufacturing but also to have a remarkable effect on automotive, medical, and other industries. Sixty-seven percent of manufacturers are already using 3D printing according to PriceWaterhouseCoopers.

One of the most important applications of 3D printing is in the medical industry. With 3D printing, surgeons can produce mockups of parts of their patient’s body which need to be operated on. Almost everything from aerospace components to toys will be possible to build with the help of 3D printers. 3D printing is also used for jewelry and art, architecture, fashion design, art, architecture and interior design.

3D printers will continue to fall in price and improve in speed and quality. The aerospace, automotive, and medical sectors will continue to be the major revenue drivers going forward over the next five years, according to Canalys.

With 3D printing, companies can now experiment with new ideas and numerous design variations with no extensive time or tooling expense. General Electric, Boeing, and BMW have already invested millions of dollars into the technology which is considered by some as the most interesting of our time.

References:

rt.com

http://www.rt.com/business/253785-3d-printing-industry-growth/

The World’s tallest building!

Another Sensational Milestone in the World of 3D Printing – The World’s Tallest Building Built from Recycled Construction Waste

http://goo.gl/IUVlcQ

image from http://mp.weixin.qq.com

A Chinese company has used 3D printers to create five-story homes using construction waste. The project architects say this is the world’s tallest building constructed using this technology.
The new project is the brainchild of Shanghai-based WinSun Decoration Design Engineering Co, who also managed to use 3D printing technology to create a 1,100 square meters villa in the Suzhou industrial park of China’s Jiangsu Province. It is not known how comfortable the buildings will be to live in, but one cannot argue with the cost, the villa complete with interior decoration cost a little over $160,000.
image from http://mp.weixin.qq.com
According to the 3D printing website 3ders.org, it took the company a day to print one level of the building and another five to put it together. In order to undertake the mammoth task, the company used a massive 150-meter long and 6 meter high printer. They use recycled building waste for the materials or ‘ink’ which also contain glass fiber, steel and cement and special additives. The process works by secreting layers of construction material on top of each other to create densely packed building blocks.
image from www.yhbm.com

The company says the buildings are perfectly safe to live in, and are expanding their horizons and hope to build housing blocks as tall as 12 stories in the future.

WinSun estimates 3D printing technology can be very savvy: it may save between 30 and 60 percent on building materials with costs slashed by 50 percent up to 80 percent. The firm said that it may also shorten production time by 50 to 70 percent.

The company has been building up a reputation. In April, it managed to print 10 full-size houses in a day.

References:

3D printing drugs?

The medical industry takes another colossal step forward!

http://rt.com/usa/182120-3d-printer-drugs-science/

AFP Photo / Jean-Philippe Ksiazek

Scientists believe they have come up with a way to print drugs, using a 3D printer. They say they can create a capsule, which can be swallowed, and it will also allow doctors to alter a dosage according to the specific requirements.

A team of researchers, from the Louisiana Tech University, believes they have come up with a solution to find a biodegradable material, which could be used to contain everyday drugs, as well as chemotherapeutic compounds for those needing cancer treatments. The 3D printer would be able to create the capsule, meaning that medicine only needs to be inserted before it is sealed, Science Daily reports.

“After identifying the usefulness of the 3D printers, we realized there was an opportunity for rapid prototyping using this fabrication method,” said Jeffery Weisman, who is a doctoral student in Louisiana Tech’s biomedical engineering program.“Through the addition of nanoparticles and/or other additives, this technology becomes much more viable using a common 3D printing material that is already biocompatible. The material can be loaded with antibiotics or other medicinal compounds, and the implant can be naturally broken down by the body over time.”

Weisman believes that one of great advantages of the new technology will be its ability to tailor the contents of a drug for particular needs. This could mean a dose of antibiotics could be made stronger or weaker, depending on the requirements of the patient. It would also mean hospitals or pharmacies would not have to wait for deliveries from pharmaceutical companies. As long as they have the drug in question, they can create the dosage in the medical facility, or drug store.

“One of the greatest benefits of this technology is that it can be done using any consumer printer and can be used anywhere in the world,” Weisman said.

Dr. David K. Mills, who is a professor of biological sciences, also added that there are other uses that 3D printers could have in the medical industry. The vast majority of antibiotic implants, which are put inside someone undergoing an operation to ensure there is no risk of infection are made out of bone cements. Bone cements, which are normally used to anchor joints, such as a hip or knee, have to be mixed by the surgeon and are non-biodegradable, meaning the implant has to be removed once the operation has been completed. The researchers now believe that these antibiotic implants can be made out of bio-plastics, which can be broken down by the body, thus meaning no additional surgery is needed.

“Currently, embedding of additives in plastic requires industrial-scale facilities to ensure proper dispersion throughout the extruded plastic,” explains Mills. “Our method enables dispersion on a tabletop scale, allowing researchers to easily customize additives to the desired levels. There are not even any industrial processes for antibiotics or special drug delivery as injection molding currently focuses more on colorants and cosmetic properties.”

So far 3D printers have been used to create the outer shells for devices such as hearing aids. Phil Reeves, who is an expert in the 3D printing industry, says that there are currently around 10 million hearing aids in circulation and that this is a conservative estimate, according to Forbes.

The great advantage of using a 3D-printed hearing aid is that it gives the user much greater comfort, as it can be adjusted to the exact measurements required. This would simply not be possible if it was mass produced in a factory.

Meanwhile, in February 2012, the BBC reported how a woman in the Netherlands was given a replacement jaw, made out of titanium powder, which had been created by a 3D printer.

Layerwise, the company who helped design the product said:

“Once we received the 3D digital design, the part was split up automatically into 2D layers and then we sent those cross sections to the printing machine,” the company added.

References:

3D printed warheads for the US Army

The US Army is making warheads using 3D printing.

Not just ‘normal’ warheads. Due to better design control and use of patterns that could not be used prior to 3D printing, these warheads are deadlier, more efficient and more economical than traditional ones.

It’s worrying, yes, but it’s also really, really impressive to see how this technology can be used ANYWHERE and improve the field.

The US Army is building deadlier, more efficient, and less costly warheads using 3D-printing technology, according to new reports.

While 3D printers have made more headlines for their ability to makehomemade firearms, and for more benevolent uses like the development ofprosthetic arms or facial reconstruction surgery, the Army is planning to use them to print sophisticated warhead components on the cheap, according to Army Technology magazine.

“3D printing of warheads will allow us to have better design control and utilize geometries and patterns that previously could not be produced or manufactured,” James Zunino, a researcher at the Armament Research, Engineering and Design Center, told Motherboard.

Traditional manufacturing methods are no match for what 3D printers can offer such weapons of mass destruction. 3D-processed components could allow for superior design such as the ability to “pack in additional payloads, sensors, and safety mechanisms,” Motherboard wrote.

Weaponry made by 3D printers will also allow the military to engineer more precise specifications on warheads, such as blast radiuses.

“Warheads could be designed to meet specific mission requirements whether it is to improve safety to meet an Insensitive Munitions requirement, or it could have tailorable effects, better control, and be scalable to achieve desired lethality,”Zunino said.

And while the US Army is attracted to 3D printing’s ability to offer more efficient mechanisms for killing, the cost-effectiveness at a time of budgetary cutbacks is enticing as well.

“3D printing also allows for integrating components together to add capabilities at reduced total life cycle costs,” Zunino said. “It is expected that 3D printing will reduce life-cycle costs of certain items and make munitions more affordable in the long run through implementation of design for manufacturability, and capitalizing on the add capabilities that 3D printing and additive manufacturing can bring to munitions and warheads.”

Zunino added that the Army is not likely to stop at mere component manufacturing.

“Maybe someday an entire warhead or rocket could be produced as the technology further matures,” Zunino said.

Printing weaponry in 3D doesn’t stop with the Pentagon. Defense giant BAE Systems announced in January that the British Royal Air Force’s Tornado fighter jets have performed their first flights with some onboard metal parts manufactured using 3D-printing technology.

BAE has also claimed in recent months that by 2040, aircraft will be able to use 3D printers to self-heal or produce mini-drones during missions using what they called ‘Transformer’ technology.

References:

Prosthetic arm from 3D printer

Here’s some touching news to brighten up your Monday a bit 🙂

http://rt.com/news/175904-kid-prosthetic-arm-3d/

image from http://today.ucf.edu

A 6 year-old boy from Florida born with right arm deficiency has received a prosthetic replacement. Now climbing a tree and catching a ball will be easier for him. Students from Florida University made it on a 3D printer for just $350 in just 8 weeks.

Help for little Alex Pring, missing his right arm from just above the elbow, came from students at the University of Central Florida. An engineering doctoral student, Albert Manero, heard about the boy’s needs and decided to recruit a team of students to create a solution for the boy.

“I mean, I’m me. So I don’t have an arm,” little Alex said. “I still try real hard to do things like other kids using what I’ve got. But it’s getting harder the more I grow,” according to the official website of University of Central Florida.

The arm and part of the hand were made on a 3D printer. They run with off-the-shelf servos and batteries that are activated by the electromyography muscle energy in Alex’s bicep.

Alex’s new limb only cost $350 to build. In comparison, prosthetic arms for children cost much more – about $40,000 – and they have to be replaced often as children grow.

Also prosthetics for kids are more difficult to make than for adults because the components are much smaller, according to Manero. When Alex gets too big for his new limb, new parts will be printed and they will also be cheap– only $20 for a new hand, and around $40 to $50 for a replacement forearm.

“I hope that people look at these other arms that cost $40,000,” Manero said. “If we can do this for just $350 in 8 weeks, I’m sure we’re going to keep pioneering.”

The arm was delivered to Alex on Friday. He practiced his new limb on a toy duck. He managed to grip the toy and squeeze it with his new hand. Then he rushed to his mother to hug her with both hands –for the first time in his life.

“When he hugged me with two hands, he just didn’t let go,” said Alyson Pring, Alex’s mother. “It was amazing. I think it will help his confidence, so he can see future possibilities and make them seem all the more reachable for him.”

Manero, who has a master’s degree from UCF in aerospace engineering and is writing his Ph.D., said he believes the team’s design could help many similarly affected children.

“My mother taught us that we’re supposed to help change the world,” said Manero. “We’re supposed to help make it better. That’s why we did it. The look on Alex’s face when he used it for the first time was priceless.”

And the enthusiastic team doesn’t want to stop at Alex – they have decided to help all children with such problems.

“We’ve already heard from another family who needs an arm. We’re committed to helping who we can.”

“ I think 3-D printing is revolutionizing our world in many ways. I believe changing the world of prosthetics is very real. There’s no reason why this approach shouldn’t work on adults too.”

References: