3D printed beef slices?


Do you still need cows, if you can 3D print beef slices?

Two scientists look at how Singapore is preparing to embrace two leading technologies – 3D printing and robotics.

Additive manufacturing (AM) or 3D printing, as it is more commonly known, is a term that is becoming more familiar, used not only by large corporations and institutions but also smaller enterprises and even individuals.

Simply put, 3D printing refers to processes that produce a 3D part from a computer-aided design model by adding materials successively, usually in a layer-by-layer fashion. These materials can be made of paper, plastic, metal or even organic materials such as tissue from cells.

3D printing in itself is not new. It has been used for over three decades, such as for printing out prototypes for designs or architectural works. But today, its usage has expanded beyond prototyping. Many industries and people now use 3D printing to make things they want, which include producing unmanned aerospace vehicles (UAVs) used in Aerospace and Defence.

As technology continues to develop and become more widespread, we are led to potentially discover new or more extensive benefits to society. In building and construction, the ability to print complicated design structures within a shorter time and with fewer resources would help to reduce housing shortage in countries like Singapore. Globally, this could also help disaster-struck countries to quickly rebuild affected communities.

Due to its game-changing potential, AM or 3D printing is forecast by The Economist magazine to be the third Industrial Revolution.

Today, manufacturers are already witnessing the positive impact of 3D printing technology in terms of enabling greater customisation while reducing costs and waste.

As products are manufactured on demand, this reduces tooling costs and the need to maintain a massive product inventory typical of traditional manufacturing methods.

From a business perspective, we also see companies evolving towards more flexible and cost-effective business models. Some may choose to focus solely on design and leave customers to manufacture the actual product. Conversely, smaller players can now manufacture their own products instead of relying on larger manufacturing chains. Along with lower investment costs and risks, this has opened doors and created opportunities for new entrants within the manufacturing field. These will shake up manufacturing as we know it today.

Companies that now produce spare parts or equipment for big manufacturers may find themselves squeezed out if the manufacturers find it more worthwhile to 3D print the parts themselves.

Shipping too can change, if ships carry their own 3D machines to print parts, or 3D print their own supplies, eliminating the need to stop at ports for repairs and resupplies.

Even space travel can be revolutionised: One exciting area of potential application is 3D printing in space, which can be used to produce necessities such as food as well as essential tools and spare parts necessary for extensive space missions.

Over the coming decades, 3D printing technology certainly has tremendous potential to revolutionise our next phase of development.

The promise of bioprinting – or the printing of live tissue – is immense. This potentially allows us to 3D print a new organ for transplant. Bioprinting has the eventual goal of improving the quality of life whether for transplant patients or for society at large.

It also has clear applications in food. After all, 3D printing allows us to produce meat for consumption by printing them with layers of animal tissue – without the need for animal husbandry or slaughter.

Bioprinting food will also minimise the risk of diseases such as mad cow disease or bird flu by eliminating the need to rear livestock for human consumption.

With the aim of empowering the average home user, the Blacksmith Group invented the Blacksmith Genesis, the world’s first 3D printer-cum-scanner. As compact as a home printer, the Blacksmith Genesis allows users to scan, edit and print any item up to 6,650 cubic cm in 3D easily. This user-friendly device enables users without much knowledge of 3D software to engineer their own products.

The Blacksmith Group is a spin-off from the Nanyang Technological University’s (NTU) newly established Singapore Centre for 3D Printing (SC3DP).

Supported by Singapore’s National Research Foundation, SC3DP was set up to drive research and collaboration towards growing Singapore’s 3D printing capabilities for the aerospace and defence, building and construction, marine and offshore and manufacturing industries.

Taking it one step further is 4D printing, which refers to the printing of three-dimensional materials with properties that will transform according to external or environmental stimuli, such as time, temperature or humidity.

Possible applications that would prove useful are using it to print the soles of shoes or sofas which can then be easily manipulated to fit the shapes and sizes of human bodies.

4D printing might also be useful for printing structures for transporting across dramatically different environments, such as from earth to space. In this case, imagine if we could print a piece of furniture in a compact format that can be subsequently assembled into a larger, complex structure in space.

Given the rate at which 3D printing technology is progressing, it is not difficult to envision that 50 years from now, we could be living in 3D printed houses, travelling on 3D printed airplanes, wearing 3D printed garments, consuming 3D printed food and much more.

The possibilities are limitless.

  • Professor Chua Chee Kai is the Executive Director, Singapore Centre for 3D Printing, at the School of Mechanical and Aerospace Engineering, Nanyang Technological University.





19 year old creator of cheap robotic arm controlled by brainwaves


19-Year-Old Uses 3D Printing to Create Cheap Robotic Arm Controlled by Brainwaves

For Easton LaChappelle, a 19-year-old from Colorado in the United States (U.S.), the difficulty with robotics has never been the technology itself – something he says he managed to master in a matter of months from his bedroom in his parent’s house – but the cost.

The technology used by most robotic arms and hands on the market – and many more of those in development – typically comes with large overheads.

In the last five years, though, learning almost exclusively online in forums and emails, LaChappelle has managed to synthesize a series of robotic hands that could change industries and lives – and most of which cost just a few hundred dollars.

While other developments in countries like Austria and Argentina have pushed the boundaries of prosthetic offerings, helping those missing limbs to start to regain use of them with robotics, LaChappelle has done so using 3D printing.

And he’s made one that he says can read your mind. It’s called Anthromod.

“This reads right about 10 channels of the brain, so it kind of works kind of like a muscle sensor in that it picks up small electric discharges and turns that into something you can actually read within software, and then we actually track patterns and try and convert that into movement. So with this I’m actually able to change grips, grip patterns, based on facial gestures, and then use the raw actual brainwaves and focus to actually close the hand or open the clamp or hand,” he told Reuters Television.

One of the most important aspects of the Anthromod design is the way in which it’s controlled by the software, which LaChappelle says is different from the types of control that exist in other robotic platforms.

While it’s the hand itself that moves, as more advanced controls are created it’s the software that’s doing the heavy lifting, using algorithms that make the arm easier to use.

“A good example is we actually had an amputee use the wireless brainwave headset to control a hand, and he was able to fluently control the robotic hand in right around about 10 minutes, so the learning curve is hardly a learning curve any more,” he said.

The arms themselves might not look polished and ready for the shop floor – but LaChappelle sees them as cutting edge.

His robotic arms are all prototypes, each fulfilling a different need according to their design, with some using a wireless brainwave headset, designed more for prosthetic use. Another of his tele-robotic controlled hands was created with dangerous environments in mind, where human-like robots could be sent to allow people to monitor situations and intervene from afar.

“I really tried to make this as human-like as possible – this is probably about my fifth generation of the full robotic arm, and this is controlled using a full tele-robotic system, so there’s actually a glove that you wear that tracks your hand movements, accelerometers to track your wrist and elbow, and then an IMU sensor as well to track your bicep rotation as well as your shoulder movement, and that gets all translated wirelessly to the robotic arm where it will copy what you do,” he said.

One of the most impressive aspects of the arm is not the hardware itself, or even the software that controls it – but the fact that it can be 3D printed for a fraction of the cost of modern prosthetics.

This allows him to make complex internal structures to the designs which would otherwise be impossible, using not just any 3D printer, but precisely the kind many expect people to have at home in the near future.

“So 3D printing allows you to create something that’s human-like, something that’s extremely customized, again for a very low cost, which for certain applications such as prosthetics, is a really big part of it,” he told Reuters.

“The full robotic arm is actually open source, and so people are now actually able to take this, reproduce it, and adapt it for different situations, applications, and really see what you can do with it,” he added.

The Anthromod itself cost only about 600 dollars to make, LaChappelle said.

His work is documented in the videos he made at home, showing his handiwork – all part of his effort at making the invention open source – which means anyone can take his technology and customize and build on it.

The idea, he said, is not to create something that can solve problems for those with prostheses and other needs for robotic arms like the ones he’s invented – but rather to create a platform that people around the world can use to customize their own versions of to suit their needs.

“A big reason we designed this on the consumer level is because we made this open source, we want someone that has a 3D printer, or very little printing experience, to be able to replicate this, to be able to use this for new applications, to be able to adapt it into new situations, so it’s really exciting to see what people will start doing with something like this,” he said.

“For the actual arm, we designed everything to be modular, meaning all the joints can actually interchange, and there’s a universal bolt pattern. So you can now create something human-like, or you can create a big 20 degree freedom arm for complex filming or even low cost automations. So we really want to make a robotics platform, not so much just a robotics hand from this,” he added.

LaChappelle hopes his efforts will contribute to developments in bomb defusal robots, heavy equipment and heavy industrial automation robotic arms, as well as exoskeletons.


Disney develops 3D printed 2-legged robot!


Disney develops 3D printed 2-legged robot that walks like an animated character

There are just a few companies in the world that need no introduction, and Disney is one of them. After all, who didn’t grow up watching Disney classics? But did you know that Disney does more than shoot box office hits, record terrible catchy songs and avoid theme park-related lawsuits? They also have an active Research Department charged with creating actual, rather than digital, creations which can be used for throughout the Disney imperium. And the department’s latest achievement is impressive: recreating the walking movements of animated characters in bi-pedal robots, which they have done using 3D printing technology.

As three scientists attached to the department in Pittsburgh – Seungmoon Song, Joohyung Kim and Katsu Yamane – explain, they set out to develop robotics that can be used to make Disney’s theme parks and toys more realistic and magical. After all, fit young heros from Disney’s movies and TV shows don’t exactly perform well when moving as stiffly as paraplegic grandmothers. ‘Creating robots that embody animation characters in the real world is highly demanded in the entertainment industry because such robots would allow people to physically interact with characters that they have only seen in films or TV. To give a feeling of life to those robots, it is important to mimic not only the appearance but also the motion styles of the characters,’ they write.

But this isn’t easy. As they write in an article entitled ‘Development of a Bipedal Robot that Walks Like an Animation Character’, the field of robotics struggles to capture life-like movement. ‘The main challenge of this project comes from the fact that the original animation character and its motions are not designed considering physical constraints,’ they write. And of course trying to tackle quirky and fast animated characters is even more difficult, as they movements are not typically designed to be physical correct. ‘[But in recent years] animation characters have evolved to be more realistic. Using computer graphic techniques, we can design 3D characters, and generate more natural and physically plausible motions with them.’

And you might be surprised to learn that their solution is somewhat similar to what you and I would do for a project: just 3D print it and add some servo motors. Of course it isn’t quite so simple, but to capture the exaggerated gait and movement of animated characters they first 3D printed leg components to match the structure of their potato-like character, which you can see in the clip below. ‘We start from animation data of a character walking. We develop a bipedal robot which corresponds to lower part of the character following its kinematic structure. The links are 3D printed and the joints are actuated by servo motors,’ they explain. All these parts were 3D printed using Stratasys’ Object 260 Connect 3D printer in RGD525 material.

Of course these need to be very specifically angled and positioned to ensure that 3D movement can be recreated. And Trajectory optimization software does most of the rest. ‘Using trajectory optimization, we generate an open-loop walking trajectory that mimics the character’s walking motion by modifying the motion such that the Zero Moment Point stays in the contact convex hull,’ they write. Now this process is more difficult than it sounds, but for a full description of data extraction and installing the mechanics you’ll have to dive into the full scientific article here.

But the results are obvious, though not perfect. The robot can definitely walk well, but doesn’t reproduce the digital models perfectly and has a tendency to wobble. ‘When we play back the optimized trajectory, the robot wobbles forward. It is because the robot does not produce the motion perfectly. For example, the stance leg flexes more and scuffs the swing foot at the beginning and end of the swing phase. This causes the swing foot to push against the ground and the stance foot to slip, which results in unstable walking,’ the scientists write.

One solution for this is slowing down the process. ‘We observed that the robot slips less as we play back the optimized motion slower, and the resulting walking looks closer to the optimized walking,’ they write, but conclude that the system just isn’t working optimal for now. While there are few options for more progress – including investigating structural materials and replacing 3D printed parts – it looks like we’ll have to wait a few years before running into mechanically-sound walking Disney characters at Disney world.


by Alec | May 27, 2015


The fourth dimension to 3D printing


Adding the fourth dimension to 3D printing

As 3D printing continues to revolutionize manufacturing, researchers have decided that three dimensions are not enough, and so the concept of 4D printing has begun to emerge. These four-dimensional objects are still built layer by layer in a 3D printer. But given time – the fourth dimension – these devices can automatically morph into a different shape, and thereby even change their function.

So far, researchers have developed devices using materials that are actuated by water or heat. This is significant, since the structures are ready as soon as you pick them up from the printer. However, up until now, the prototypes developed were slow, severely limited in the amount of times they could be used, and weak, since they relied on a bending motion in a flexible material.

Professor Marc in het Panhuis and PhD student Shannon Bakarich are set to change all that. The University of Wollongong researchers are the first to use a process whereby four different materials were printed simultaneously. The hydrogels used by the team consist of a network of poly N-isopropylacrylamide (PNIPAAm) and alginate. Alginate is a salt of alginic acid that is commonly found in seaweed and algae. Among other things, it is used as a thickener in food. PNIPAAm consists of two polymer networks entangled in one another. This gives the material strength and durability. When cracks form in one network, the other network bridges the gaps and so prevents greater damage.

4D printing 3D printing

The dual-network structure is not unique to PNIPAAm. However, the researchers used PNIPAAm since it exhibits a large change in volume at a critical temperature of about 32-35° Celsius (90-95° F). This change in volume is caused by a transition of the polymers from a collapsed globule state to an expanded coil state. When the temperature goes down, the polymers collapse back into globules.

The researchers combined thin sections of PNIPAAm with traditional materials. This allowed them to create a design capable of relatively fast linear motion, much like the contraction of a muscle. Best of all, this process is reversible. The transition can be actuated by different stimuli, depending on the hydrogels used.

Using PNIAAm, the researchers have developed a functioning valve that responds to the temperature of the water surrounding it. “It’s an autonomous valve,” says Panhuis in a statement. “There’s no input necessary other than water.” An autonomous device like this is valuable in medical soft robotics. As soon as the surrounding water reaches a certain temperature, the polymer strands inside the hydrogel change their shape. The large change in volume in the hydrogel causes a strong linear motion, which closes the valve.

Combining smart materials and 3D printing in this way offers an exciting method of creating custom designs of small autonomous devices. “The cool thing about it is, it’s a working, functioning device that you just pick up from the printer,” Panhuis said. Maybe we will one day even be able to print our own self-assembling structures and soft robots.


by  | May 24, 2015 at 9:30 am