3D printed beef slices?

http://www.straitstimes.com/opinion/do-you-still-need-cows-if-you-can-3d-print-beef-slices

Do you still need cows, if you can 3D print beef slices?

Two scientists look at how Singapore is preparing to embrace two leading technologies – 3D printing and robotics.

Additive manufacturing (AM) or 3D printing, as it is more commonly known, is a term that is becoming more familiar, used not only by large corporations and institutions but also smaller enterprises and even individuals.

Simply put, 3D printing refers to processes that produce a 3D part from a computer-aided design model by adding materials successively, usually in a layer-by-layer fashion. These materials can be made of paper, plastic, metal or even organic materials such as tissue from cells.

3D printing in itself is not new. It has been used for over three decades, such as for printing out prototypes for designs or architectural works. But today, its usage has expanded beyond prototyping. Many industries and people now use 3D printing to make things they want, which include producing unmanned aerospace vehicles (UAVs) used in Aerospace and Defence.

As technology continues to develop and become more widespread, we are led to potentially discover new or more extensive benefits to society. In building and construction, the ability to print complicated design structures within a shorter time and with fewer resources would help to reduce housing shortage in countries like Singapore. Globally, this could also help disaster-struck countries to quickly rebuild affected communities.

Due to its game-changing potential, AM or 3D printing is forecast by The Economist magazine to be the third Industrial Revolution.

Today, manufacturers are already witnessing the positive impact of 3D printing technology in terms of enabling greater customisation while reducing costs and waste.

As products are manufactured on demand, this reduces tooling costs and the need to maintain a massive product inventory typical of traditional manufacturing methods.

From a business perspective, we also see companies evolving towards more flexible and cost-effective business models. Some may choose to focus solely on design and leave customers to manufacture the actual product. Conversely, smaller players can now manufacture their own products instead of relying on larger manufacturing chains. Along with lower investment costs and risks, this has opened doors and created opportunities for new entrants within the manufacturing field. These will shake up manufacturing as we know it today.

Companies that now produce spare parts or equipment for big manufacturers may find themselves squeezed out if the manufacturers find it more worthwhile to 3D print the parts themselves.

Shipping too can change, if ships carry their own 3D machines to print parts, or 3D print their own supplies, eliminating the need to stop at ports for repairs and resupplies.

Even space travel can be revolutionised: One exciting area of potential application is 3D printing in space, which can be used to produce necessities such as food as well as essential tools and spare parts necessary for extensive space missions.

Over the coming decades, 3D printing technology certainly has tremendous potential to revolutionise our next phase of development.

The promise of bioprinting – or the printing of live tissue – is immense. This potentially allows us to 3D print a new organ for transplant. Bioprinting has the eventual goal of improving the quality of life whether for transplant patients or for society at large.

It also has clear applications in food. After all, 3D printing allows us to produce meat for consumption by printing them with layers of animal tissue – without the need for animal husbandry or slaughter.

Bioprinting food will also minimise the risk of diseases such as mad cow disease or bird flu by eliminating the need to rear livestock for human consumption.

With the aim of empowering the average home user, the Blacksmith Group invented the Blacksmith Genesis, the world’s first 3D printer-cum-scanner. As compact as a home printer, the Blacksmith Genesis allows users to scan, edit and print any item up to 6,650 cubic cm in 3D easily. This user-friendly device enables users without much knowledge of 3D software to engineer their own products.

The Blacksmith Group is a spin-off from the Nanyang Technological University’s (NTU) newly established Singapore Centre for 3D Printing (SC3DP).

Supported by Singapore’s National Research Foundation, SC3DP was set up to drive research and collaboration towards growing Singapore’s 3D printing capabilities for the aerospace and defence, building and construction, marine and offshore and manufacturing industries.

Taking it one step further is 4D printing, which refers to the printing of three-dimensional materials with properties that will transform according to external or environmental stimuli, such as time, temperature or humidity.

Possible applications that would prove useful are using it to print the soles of shoes or sofas which can then be easily manipulated to fit the shapes and sizes of human bodies.

4D printing might also be useful for printing structures for transporting across dramatically different environments, such as from earth to space. In this case, imagine if we could print a piece of furniture in a compact format that can be subsequently assembled into a larger, complex structure in space.

Given the rate at which 3D printing technology is progressing, it is not difficult to envision that 50 years from now, we could be living in 3D printed houses, travelling on 3D printed airplanes, wearing 3D printed garments, consuming 3D printed food and much more.

The possibilities are limitless.

  • Professor Chua Chee Kai is the Executive Director, Singapore Centre for 3D Printing, at the School of Mechanical and Aerospace Engineering, Nanyang Technological University.

References:

straitstimes.com

http://www.straitstimes.com/opinion/do-you-still-need-cows-if-you-can-3d-print-beef-slices

Industrial revolution!

Educate Yourself About the Upcoming Revolution in the World of Manufacturing!

http://goo.gl/97BSt2

makerbot_660

THE WORLD AROUND us has advanced so much that science fiction is no more a fiction. Moving from prototyping to tooling, additive manufacturing commonly known as 3D printing has expanded to full-scale end-part production and replacement part production. Be it a 3D printed bionic ear enabling you to hear beyond human hearing frequencies, 3D printed cake toppings taking the culinary innovation to another level, 3D printing your dream house in just a few hours — 3D printing is revolutionizing every walk of life. According to Wohlers Report 2014, the worldwide revenues from 3D printing are expected to grow from $3.07 billion in 2013 to $12.8 billion by 2018, and exceed $21 billion by 2020.

No wonder one of the biggest players in printing, HP (Hewlett-Packard), entered the field with a faster, cheaper version of 3D Printer focused on Enterprise Market. So is this the first step from a “revolutionary” Maker Movement to an Industrialized Scale that technology eventually needs to survive for the long term? To a world of taking a 3D physical product or an idea to the Digital World, which happens to be 2D and then back out to 3D physical form anywhere across the globe, where an IP address and enough bandwidth is available to be able to transmit the Digital Model. This does have significant disruption potential. How much and when this will happen will of course depend on several factors across economics, technological feasibility, policies and of course politics. So are we finally ready to go beyond the growth that the DIY enthusiasts have driven from 200% to 400% in personal 3D printers between 2007 and 2011 according to a McKinsey Study.

Before we pose those questions, let’s look at what has been already achieved or near achievement across markets beyond printing prototypes, toys and models.

In the field of medicine, 3D printing of complex living tissues, commonly known as bioprinting, is opening up new avenues for regenerative medicine. With an improved understanding of this technology, researchers are even trying to catalyze the natural healing mechanism of the body by creating porous structures that aid in bone stabilization in the field of orthopedics. This cutting edge technology in conjunction with stem cell research is likely to revolutionize the made-to-order organs, cutting across the transplant waiting lists. Even intricate human body parts like the brain can be replicated using the 3D technology to aid in complex medical surgeries through simulation.

The Aerospace industry, an early adopter of this technology, is already designing small to large 3D printed parts saving time, material and costs. 3D printing also offers the biggest advantage critical to the aerospace manufacturers – weight reduction. It also accelerates the supply chain by manufacturing non-critical parts on demand to maintain JIT (Just-in-time) inventory. The power of additive manufacturing can do away with several manufacturing steps and the tooling that goes with it.

The Automobile world is already witnessing crowd-sourced, open-source 3D printed vehicles driving off of the showroom floors. Local motors caught the audience by surprise by 3D printing its car ‘Strati’ live at the International Manufacturing Technology Show (IMTS) in Chicago. So how can an auto part be a challenge by any means? Are we headed towards making that exhilarating smell of burnt rubber a thing of the past? Something future generation will ask, what the big deal about that was? How about robots with muscle tissue powered parts?

The 3D printed “bio-bot,” developed by the University of Illinois at Urbana-Champaign, is likely to be really flexible in its movements and navigation. (So, forget about the much jibed about robotic movements.) With this breakthrough, researchers are contemplating on the possibility of designing machines enabled with sensory responding abilities to complex environmental signals.

So where does all this lead us?

The excitement growing around the 3D technology is palpable and rightly so not without a reason. 3D technology surely shifts the ownership of production to the individuals and brings to light most of the inefficiencies of mass-production. Of course, not everything can be 3D printed, but a wider use of 3D printers might reduce need for logistics as designs could be transferred digitally leading to a decentralization and customization of manufacturing. 3D scanning as an enabling technology will also help in creating an ecosystem to support users. The layer by layer manufacturing by 3D printing has the dexterity to fabricate intricate geometries efficiently and hence reduces the wastage caused by traditional manufacturing methods.

By reducing the cost and complexity of production, 3D printing will force companies to pursue alternate ways to differentiate their products. It will also help companies enhance their aftermarket services by facilitating easy on-demand manufacturing of replacement parts. As manufacturing is moving closer to the consumers, the consumer is fast transforming into a prosumer.

There are, of course, hurdles to overcome, not the least entrenched incumbency and policies, which will be governed by more short term economic and social impacts as the positive outcomes of such revolutions are often difficult to envision.

McKinsey has estimated a potential of generating an economic impact of $230 billion to $550 billion per year by 2025 with various 3D applications, the largest impact being expected from consumer uses, followed by direct manufacturing. As the breadth of application of 3D printing continues to grow, it will be interesting to observe how the industries will mix with and influence the future of additive manufacturing.

Almost every sector of the industry is riding on the 3D opportunity bringing innovations to reality and the world is ready to hop on to a decentralized industrial revolution. Are you?

References:

3D printing revolution

An infographic on some of the many ways in which 3D printing can be a HUGE asset to the classroom!

"An infographic on some of the many ways in which 3D printing can be a HUGE asset to the classroom!"

Retro Gaming Revolution

Our latest blog post shows you the impact of 3D printing on retro gaming and how its injecting it with colour and life 🙂

http://malta3dprinting.blogspot.com/…/retro-gaming-revoluti…

Retro Gaming Revolution

Wouldn’t it be nice to sit back and relax while a 3D printer churns out a video game console or a stylish controller?

It sounds unrealistic to say the least – but this seemingly futuristic production process is already happening!

We’re not talking about Xbox One’s and PS4’s being produced en masse – but rather, about retro gaming and innovative peripherals making a return thanks to 3D printing.

Courtesy of Adafruit, a New-York based outfit that incorporates 3D printing in certain products, theopen-source community has received a major boost.

3D Printed Game Boy

In collaboration with the ground-breaking Raspberry Pi, 3D printing now boasts the quarter-century old Game boy in its arsenal. Created by Adafruit, Raspberry Pi – easily mistaken for a small motherboard – is actually a mini-computer you can plug into your TV or keyboard.
Capable of smooth emulation, all the Raspberry Pi requires to transform into a Game boy is a few hours of dedication and the necessary components. The video below directs viewers to a user-friendly assembly guide.

Once its assembled, all that’s left is to download your favorite old school games, (in ‘ROM‘ format)  upload them onto the SD card and begin button bashing.

Broken buttons on your new Game Boy after hours of playing? Malta 3D Printing has you covered!

Sure, a Game Boy isn’t a revolutionary product that’s going to change the world, but it definitely highlights 3D printing’s versatility. It can easily take devices that are decades old and breathe fresh life into them.

3D Printed Guitar/Controller

Adafruit once again provides the cornerstone of this 3D printed guitar, in the form of Bluefruit EZ-key. This nifty Bluetooth device allows users to turn any game-pad – or DIY project like the EZ-Key MIDI Guitar – into a fully functioning controller.

Besides looking totally awesome, the EZ-Key MIDI Guitar is multifunctional – serving either as a MIDI (musical instrument digital interface) instrument, DJ controller or a regular video game controller.

You could customize your own case in a material you desire, without worrying about 3D printing, but where’s the fun in that?

Printed in four separate pieces, this project is not for an amateur technician.

However, should you have the time, tools and patience available at your disposal, this guitar will definitely turn heads.

You can upload data from your musical masterpieces on the web, or quench your thirst for superficial crowd approval on Guitar Hero. You can even make playing everyday video games extremely challenging, by attempting to use it as a normal controller!

All 10 buttons are customizable, and there’s even a mic inside the casing which allows the LED lights to change depending on sound levels.

Portaberry Pi

Our favourite product from today’s post is the Portaberry Pi, another DIY project that uses Raspberry Pi.

Unveiled on 3DPrintBoard‘s online forum by a dedicated hobbyist, Portaberry Pi is the result of dozens of unselfish man hours aimed at providing gaming aficionados with a new toy to play with.

It may not be as recognizable as the Game Boy, a symbol of gaming culture – but it’s certainly easy on the eye and definitely captures the retro gaming feeling.

 Recently featured on LifeHacker, the Portaberry Pi has been described as a “fantastic retro game machine,” and the best part about it – the files are all available for free on Thingiverse.

One can only hope that this mentality continues to proliferate throughout society, allowing people with technical know-how to share their knowledge and wisdom with others.

MALTA3DPRINTING.BLOGSPOT.COM
by  | 17 July 2014