3D printed parts for a car

http://www.stuff.co.nz/motoring/news/71751824/the-car-of-the-future-to-use-3d-printed-parts

Car parts could use 3D printing techniques in the future, according to BMW

The car of the future to use 3D printed parts

Car companies will soon make use of 3D printing to manufacture parts, bringing benefits in cost and strength that will improve the affordability and driving character of future vehicles, according to BMW’s head of lightweight design Florian Schek.

While most vehicle manufacturers use the advanced technology during the development and design phase to quickly create prototype parts or models, Schek believes it won’t be long before the technology is transferred into end-consumer production techniques.

He admitted that it is likely to be used on low-volume speciality vehicles first as the time needed to mass-produce parts by 3D printing is not as quick as conventional methods such as casting and forging for metals, or as affordable as plastics. But he said the rapid advances in the technology will ensure its future application is viable.

“We have that already in prototyping,” he told Drive.

“But there is definitely a future for it in mainstream production. It will come.

“I think it will take some time in high-volume production, but it is not that far away for specialist models like the i8. We can do some very interesting things with 3D printing that we cannot do with other methods and it is quite exciting about the benefits, both in terms of design and structure.”

Schek said the benefits of 3D printing structural elements – including major components such as shock absorber towers – could see improvements in weight reductions and rigidity, as the printing process could create components more intricately.

“With 3D printing we can see advantages in being able to build parts with strength where it is needed and not in places where it isn’t, and this will help improve decreasing weight. We can design the part according to the forces that are running through it, this will be a big step forward for some areas,” he told Drive during the launch of the all-new BMW 7-Series, which uses different materials in its skeleton – including steel, aluminium and carbon fibre – to reduce weight and increase overall strength.

“I can also see it eventually improving time to production in some circumstances too, because some components currently need to go through many processes to be ready for assembly whereas with 3D printing it is designed to be a finished product.”

stuff.co.nz

by ANDREW MACLEAN | 06:00, September 6 2015

Advertisements

3D printing with light

http://3dprint.com/89024/calarts-3d-printing-with-light/

IMG_2444

CalArts Student Experiments with 3D Printing Light

Not all 3D printing is meant to last. When CalArts student Aaron Bothman decided to print something for his short film The Red Witch, his thesis project, he wanted it to be less permanent. Having seen the work of Beijing-based artist Ekaggrat Singh Kalsi, who has used a modified 3D printer to ‘print’ in light, he found his inspiration.

Not something that you can pick up with your hands, the product of this technique is something that can be captured on film, which is exactly the medium in which Bothman works.

He and his father worked together on building the printer, a small delta model constructed from a kit but with a particular twist. When assembled, an LED was placed where the hot end would usually have been installed. This allows Bothman to capture the light on film by using a long exposure while the printer runs the model, tracing out the shapes as a 3D light painting.

Ripple_400x400

This isn’t the first 3D printing project that Bothman junior and Bothman senior have worked on together. In an interview with 3DPrint.com, Aaron talked about his experience printing with his father and how it has influenced his work both while at CalArts and after graduation:

“I’m an animator and artist based in Los Angeles. I graduated from the animation program at CalArts a couple months ago, and am currently working as an artist at JibJab, a small studio in LA. I originally learned about 3D printing in middle school from my dad, who teaches mechanical engineering at UCSB, and who helped a lot in thinking through this project. As a stop-motion filmmaker, 3D printing allows me to tackle more ambitious projects on a short production schedule than I might be able to otherwise.”

Wave_400x400

In order to create the light animation, each Maya image to be captured is sent to the printer one frame at a time. Over time, these images create the illusion of movement, just as is done in more traditional stop motion filming. The result is a piece that is built up in layers, requiring the same mode of conceptualization as a 3D printing project but with the option for movement and, of course, no support materials. In fact, no materials at all, something that makes this a particularly appealing way to engage in a 3D printed project if there is no need for the product to be tangible.

Somewhat akin to the old question about a tree falling in the forest with no one to hear it, the question that could be asked of this technique could be: when a 3D printer creates something that cannot be touched, is it still 3D printing? The creations don’t truly occupy space or at least they only do for a fleeting moment but as they dance before your eyes, I think you may be willing to set that debate aside for a moment. Just think of it this way: with this technique, you could print all you want and never run up a bill for filament and never have to worry about storage space.

And that sounds pretty ideal to me.

Let us know what you think about this concept in the 3D Printing with Light forum thread at 3DPB.com.

3dprint.com

by  | AUGUST 15, 2015

3D printing and the new economics of manufacturing

http://www.forbes.com/sites/ricksmith/2015/06/22/henry-ford-3d-printing-and-the-new-economics-of-manufacturing/

Production Equation 1

3D Printing And The New Economics Of Manufacturing

3D printing production is just scratching the surface of the multi-trillion dollar global manufacturing industry. But its dominance is already pre-determined.

This is because modern manufacturing, despite numerous technological and process advances over the last century, is still a very inefficient global system. Today’s world of mass production is based on one simple rule: the more things you make, the lower the cost of each of those things. We have literally pushed this equation to its extreme limits.

This approach was dramatically accelerated by Henry Ford, arguably the most impactful character in the industrial revolution. For starters, Ford proved out the model of mass production. He wasn’t the first to create the assembly line, but he was the first of his time to perfect it. He built massive factories, and greatly standardized his product and processes. He once famously stated, “Any customer can have a car painted any color that he wants, so long as it is black.”  The quote may be familiar, but do you know why only black? It wasn’t due to Ford’s forward-thinking design sense, but rather because black was the only color that could dry fast enough to keep up with his assembly lines.

By 1915 he had reduced the time it took to build an automobile by 90%. By 1916, an astounding 55% of the automobiles on the road in America were Model Ts.

Ford mastered mass production and created the world’s first mass consumer product. But there is another reason why Ford is such an important figure historically.  Henry Ford literally punctuated the industrial revolution. We have all been taught about the industrial revolution as if it were a binary switch. There was a before and an after. We all believe we live safely in the after. This IS the future.

But what if that’s wrong?  What if mass production is not the end of this story, but rather just a stop along the way to something completely different? What if a technology came along that could turn everything upside down all over again?

3D printing is a technology that allows you to create things differently, from the ground up, layer by layer until you have a fully formed 3 dimensional object. Just like you now send a computer file of a document to a printer in your home or office, you can now send a computer file of an object to a 3D printer, and out comes that physical object. Eventually, you will be able to print almost anything you can imagine.

forbes.com

by Rick Smith | JUN 22, 2015 @ 5:11 PM

The fully-body Iron Man suit!

An Incredible 1.8 Miles of Filament Were Used to Create This Fully-Body Iron Man Suit!

http://3dprint.com/48264/3d-printed-iron-man-suit/

i3

One of the areas which has seen substantial benefit from 3D printing is that of the prop and costume industry. Whether created for movie and set production or printed out as simply a hobby, the design attributes that 3D printing has to offer are taking prop and costume making to the next level.

Over the last 13 months we have seen numerous body suits and masks from popular movies 3D printed. We’ve seen entire 3D Printed Alien Xenomorph suitscreated, as well as life-sized suits such as the Hulkbuster from the Iron Man movies 3D printed and then painted. Additive manufacturing enables fine intricate details which could not have been accomplished without great expense using traditional forms of subtractive manufacturing.

In what may be one of the most detailed and largest prop/costume projects we have seen to date, a 20-year-old Marvel Comics enthusiast named Ross Wilkes has created a 3D printed life-sized Iron Man suit.

The project — which Wilkes started way back in 2013 as part of his odd, yet very creative, New Year’s resolution — has taken 14 months to finally culminate in a complete suit reminiscent of Tony Stark’s famous armor.

“Building my own Iron Man suit has been an incredible challenge,” says Wilkes. “Before I could start, I had to learn the basics of 3D printing and was able to pick up the rest along the way. I’m thrilled with what I’ve been able to create using only a 3D printer, and to be able to see the complete suit now is incredible.”

i3

‘Incredible’ may be an understatement. Wilkes, who used only one 3D printer, a Velleman K8200, which was purchased in kit form back in 2013 and assembled soon thereafter, used quite a bit of filament for this project. A total of 32 1kg-spools of filament were used, equating to approximately a 1.8-mile-long strand. Because the Velleman 8200 has a build envelope of just 20 x 20 x 20 cm, Wilkes had to 3D print the suit in hundreds of separate pieces before fusing them all together, sort of like a puzzle.

Velleman 8200 3D Printer

Three different colors of filament were used for the main body of the suit — red, gold, and gray — and it even features the familiar chest repulsor transmitter, centered at the sternum area. Unlike many past projects we have seen, Wilkes did not paint or use any finishing techniques on this project, relying on the colors of the filament to do their job. As you can see from the images provided to us by Wilkes, he’s done a remarkable job at realizing an accurate rendition of the suit, one which appears to be 3D printed, yet still remains a very accurate representation of the suit we are all familiar with from comic books and movies.

Let’s hear your thoughts on this incredible 3D print in the 3D printed Iron Man Suit forum thread on 3DPB.com.

i4

i9

3DPRINT.COM
by  | MARCH 3, 2015

3D printing used in Opel cars

Take a look at how Opel are using 3D printing to make life at their assembly plants cheaper yet better!

http://www.engineering.com/…/Tools-from-3D-Printer-Make-Car…

opel, jigs, fixture, automotive

For some, it may still seem like a long way off, but it’s already part of everyday life at Opel: assembly tools produced by a 3D printer are an increasingly important part of the production process. A six-strong team led by Virtual Simulation Engineer Sascha Holl prints plastic assembly tools in Rüsselsheim which are used in Opel manufacturing plants across Europe. Cheaper and quicker to produce, these tools are being used at Eisenach for the assembly of the ADAM and its new ADAM ROCKS stable-mate. And this is just the beginning – Opel experts predict the use of tools from a 3D printer will continue to grow. “In the future, more and more 3D assembly tools will be integrated into the production process,” says Sascha Holl.

For production of the ADAM ROCKS, to be launched in September, the Eisenach carmakers use an assembly jig – a specific, fixed frame – made by a 3D printer to produce the vehicle name logotype on the side window. And for the windshield, a 3D-printed inlet guide is also used to simplify the mounting process and help ensure a precise alignment. Other tools from the printer are used to fasten the chrome step plate on ADAM ROCKS door openings and install the standard Swing Top canvas roof. Around 40 such assembly aids and jigs are used in Eisenach.

This equipment was developed on the computer during the development phase of ADAM ROCKS. “It enables us to quickly adapt the parts. If something changes on the vehicle, we can easily modify the tool with just a few clicks,” explains Holl. “The 3D printing process enables us to produce every imaginable form and shape. Unlike conventional manufacturing technology, we don’t have to accept any limitations.”

The Virtual Engineering Team in Rüsselsheim only has to reach into their bag of tricks when it comes to the maximum size of parts built. Using sophisticated technology to join a number of smaller elements, it is possible to produce larger parts. For instance, when developing an assembly aid for the side sill or the rear spoiler of ADAM ROCKS.

During 3D printing, plastic is melted and laid down in successive layers, each just 0.25 mm thick. The plastic used is light, robust and versatile. Hollow spaces and overhangs are automatically treated with a filling material, which is later washed away in a type of dishwasher. “The process is comparable to bridge or balustrade construction,” says Holl. “There high or protruding elements must also be shored up and supported until everything has hardened off. Only then is the supporting framework removed.”

The small number of jigs required in final assembly was previously made by hand in an elaborate process using a milled cast and resin. Thanks to 3D printing, the production cost of these aids is now reduced by up to 90 percent. In addition, the printed tools are ready to use after just about eight hours, and are up to 70 percent lighter in weight. Another advantage is that these aids can be mechanically and chemically processed. For example, they can be drilled, milled, sanded, varnished and bonded, or connected and combined with various other materials. Ergonomic fine-tuning can also be carried out on a PC in a matter of minutes. “We can adapt the tools for each assembly situation, as well as make them user-friendly for our colleagues on the line,” adds Holl.

Production of the Opel Insignia and Cascada convertible also benefits from 3D printer tools, which will be introduced step-by-step for the assembly of other Opel models. The new Corsa, Vivaro and Mokka, which will begin rolling off the assembly lines in Zaragoza later this year, will be among models built with the help of tools from a 3D printer. Their increasing use makes Opel a leader in this field within the GM Group.

References:

ENGINEERING.COM
by http://www.engineering.com/Author/ID/8/TheEngineer | August 21, 2014