3D printed beef slices?

http://www.straitstimes.com/opinion/do-you-still-need-cows-if-you-can-3d-print-beef-slices

Do you still need cows, if you can 3D print beef slices?

Two scientists look at how Singapore is preparing to embrace two leading technologies – 3D printing and robotics.

Additive manufacturing (AM) or 3D printing, as it is more commonly known, is a term that is becoming more familiar, used not only by large corporations and institutions but also smaller enterprises and even individuals.

Simply put, 3D printing refers to processes that produce a 3D part from a computer-aided design model by adding materials successively, usually in a layer-by-layer fashion. These materials can be made of paper, plastic, metal or even organic materials such as tissue from cells.

3D printing in itself is not new. It has been used for over three decades, such as for printing out prototypes for designs or architectural works. But today, its usage has expanded beyond prototyping. Many industries and people now use 3D printing to make things they want, which include producing unmanned aerospace vehicles (UAVs) used in Aerospace and Defence.

As technology continues to develop and become more widespread, we are led to potentially discover new or more extensive benefits to society. In building and construction, the ability to print complicated design structures within a shorter time and with fewer resources would help to reduce housing shortage in countries like Singapore. Globally, this could also help disaster-struck countries to quickly rebuild affected communities.

Due to its game-changing potential, AM or 3D printing is forecast by The Economist magazine to be the third Industrial Revolution.

Today, manufacturers are already witnessing the positive impact of 3D printing technology in terms of enabling greater customisation while reducing costs and waste.

As products are manufactured on demand, this reduces tooling costs and the need to maintain a massive product inventory typical of traditional manufacturing methods.

From a business perspective, we also see companies evolving towards more flexible and cost-effective business models. Some may choose to focus solely on design and leave customers to manufacture the actual product. Conversely, smaller players can now manufacture their own products instead of relying on larger manufacturing chains. Along with lower investment costs and risks, this has opened doors and created opportunities for new entrants within the manufacturing field. These will shake up manufacturing as we know it today.

Companies that now produce spare parts or equipment for big manufacturers may find themselves squeezed out if the manufacturers find it more worthwhile to 3D print the parts themselves.

Shipping too can change, if ships carry their own 3D machines to print parts, or 3D print their own supplies, eliminating the need to stop at ports for repairs and resupplies.

Even space travel can be revolutionised: One exciting area of potential application is 3D printing in space, which can be used to produce necessities such as food as well as essential tools and spare parts necessary for extensive space missions.

Over the coming decades, 3D printing technology certainly has tremendous potential to revolutionise our next phase of development.

The promise of bioprinting – or the printing of live tissue – is immense. This potentially allows us to 3D print a new organ for transplant. Bioprinting has the eventual goal of improving the quality of life whether for transplant patients or for society at large.

It also has clear applications in food. After all, 3D printing allows us to produce meat for consumption by printing them with layers of animal tissue – without the need for animal husbandry or slaughter.

Bioprinting food will also minimise the risk of diseases such as mad cow disease or bird flu by eliminating the need to rear livestock for human consumption.

With the aim of empowering the average home user, the Blacksmith Group invented the Blacksmith Genesis, the world’s first 3D printer-cum-scanner. As compact as a home printer, the Blacksmith Genesis allows users to scan, edit and print any item up to 6,650 cubic cm in 3D easily. This user-friendly device enables users without much knowledge of 3D software to engineer their own products.

The Blacksmith Group is a spin-off from the Nanyang Technological University’s (NTU) newly established Singapore Centre for 3D Printing (SC3DP).

Supported by Singapore’s National Research Foundation, SC3DP was set up to drive research and collaboration towards growing Singapore’s 3D printing capabilities for the aerospace and defence, building and construction, marine and offshore and manufacturing industries.

Taking it one step further is 4D printing, which refers to the printing of three-dimensional materials with properties that will transform according to external or environmental stimuli, such as time, temperature or humidity.

Possible applications that would prove useful are using it to print the soles of shoes or sofas which can then be easily manipulated to fit the shapes and sizes of human bodies.

4D printing might also be useful for printing structures for transporting across dramatically different environments, such as from earth to space. In this case, imagine if we could print a piece of furniture in a compact format that can be subsequently assembled into a larger, complex structure in space.

Given the rate at which 3D printing technology is progressing, it is not difficult to envision that 50 years from now, we could be living in 3D printed houses, travelling on 3D printed airplanes, wearing 3D printed garments, consuming 3D printed food and much more.

The possibilities are limitless.

  • Professor Chua Chee Kai is the Executive Director, Singapore Centre for 3D Printing, at the School of Mechanical and Aerospace Engineering, Nanyang Technological University.

References:

straitstimes.com

http://www.straitstimes.com/opinion/do-you-still-need-cows-if-you-can-3d-print-beef-slices

Mainstream 3d printing

http://www.ibtimes.com.au/3d-printing-breaking-mainstream-1450988

3D Printing

3D Printing Is Breaking Into The Mainstream

Five years ago, the thought of “mainstream 3d printing” might seem a little far-fetched for the practical manufacturer. However, the technology has advanced in such a rapid pace that the number of industries applying the process continue to increase. At the moment, 3D printing can produce anything from human stem cells to airplane parts. Indeed, the possibilities with additive manufacturing are limitless.

Analysts at research company Gartner said that a technology has officially become mainstream when it reaches an adoption level of 20 percent. In 2014, a PWC survey revealed that more than two-thirds of 100 manufacturing companies were using 3D printing, with 28.9 percent stating that they were still experimenting on processes in which they would implement the in-demand technology.

Additionally, 9.6 percent of the companies revealed that they were in the stages of prototyping and production, and these companies include General Electric, Boeing and Google. Companies that belong to this tier testified to the advantageous effects of 3D printing, which include time saving and cost efficiency. Another survey held by the International Data Corporation, or IDC, revealed that 90 percent of the companies that use 3D printing are very satisfied with its benefits.

Large companies represent biggest buyers of 3D printer, but the high number of smaller and independent businesses opting to use 3D printing is still difficult to ignore. Keith Kmetz, vice president of Hardcopy Peripherals Solutions and Services at IDC, stated that companies that apply 3D printing are well aware of its positive benefits.

“These printers are typically acquired for a specific creation workflow, but once in place, the usage expands rapidly to other types of applications. The early adopters who recognized the substantial cost and time-to-market benefits of 3D printing have carried the day, but it’s their overall satisfaction and the ability to expand usage that will ultimately drive 3D printing to the next level,” said Kmetz.

In the next couple of years, more companies are expected to switch to 3D printing, and more materials will be used for a wide array of products. Currently, the most commonly used materials are basic plastics, ceramics, cement, glass and numerous metals such as titanium and aluminum. The demand for these materials will continue to increase, especially for titanium. Titanium is heavily used in the medical, aerospace, and automotive applications of 3D printing, in the form of personalised surgical implants and fuel tanks.

To sustain 3D printing’s use of titanium when it hits the mainstream, the global pipeline for the semi-precious metal should be secured for the following years. Thankfully, several mines in South America are already on their way to produce high-grade supply of titanium, such as White Mountain Titanium Corporation (OTCQB: WMTM) in Chile. White Mountain Titanium sits on a deposit in Cerro Blanco that contains 112 million tons of high-grade rutile. Companies applying 3D printing can benefit from it once the mine starts distributing the supply around the world.

ibtimes.com.au

by  | June 04 2015 12:11 AM

3D printed clothes!

http://www.engadget.com/2015/05/20/3d-printing-clothes-electroloom/

3D printing your own clothes just became (kinda) a reality

Unless the technology, somehow, proves to be drastically limited, 3D printing is likely to the genesis of a manufacturing revolution. Now, a team in San Francisco believes that it has taken another leap towards our utopian future by building a “3D printer” for our clothes. The team behind Electroloom hope that, a few years down the line, instead of trips to H&M, you’ll be ducking into your basement with a set of drawings the next time you need a new outfit.

Essentially, the Electroloom is a plastic box that can hold a thin metal template, for instance a crudely crafted tank top. Then, a customized mix of liquid polyester and cotton is passed through an electrically charged nozzle and spun into nano-fibers. These fibers are then drawn towards the 2D template, where they bind to each other to form a very thin, but very strong fabric. Even though they’re quite crude, the resulting “clothes” have no seams or stitching, making them much stronger than your average t-shirt. If there’s one downside, it’s that the terminally impatient will have to wait between eight and 16 hours for their clothes to form. Of course, given the various ethical and environmental issues that surround fashion providers, on-the-go clothes manufacturing seems like an easy win.

The company is looking to raise $50,000 in funding on Kickstarter, and much like Oculus and some other high-profile startups, Electroloom isn’t offering this as a consumer product. Instead, it’s offering Alpha versions of its hardware for designers, inventors and creators in the hope of improving the system. If you’re prepared to chip in $4,500 (told you), then you’ll get a prototype, complete with 1.5 liters of solution that, the company promises, is enough to produce 7 beanies, 4 tank tops or 3 skirts. You’ll be able to buy more liquid when you run out, but Electroloom doesn’t yet know how much it’ll cost you.

engadget.com

by Daniel Cooper | May 20th 2015 At 2:47pm

3D printed LEGO

Introducing ‘Uberblox’, the Modern Equivalent of Lego!

http://www.gizmag.com/uberblox-modular-construction-set-…/…/

A 3D CNC router (computer controlled cutting machine) assembled from UberBlox, which is a new Lego-like metal construction and prototyping kit (Photo: UberBlox)

As cool and wonderful as Lego is, those plastic bricks can be tricky to handle if you want to step up from mere constructive play into serious custom-built prototyping. UberBlox hopes to fill that gap. It’s a metal construction set and prototyping system with a single-connector locking mechanism and a variety of control boxes for accommodating whatever computer connection or automation needs a project might have.

“It is difficult to make automated machines without years of developing skills and know-how,” UberBlox Systems founder Alex Pirseyedi tells Gizmag. “You need to know about technical design principles, not to mention the skills required to fabricate and assemble parts accurately to make such complicated machines work.”

UberBlox was born of the need for a solid, easy-to-use modular system that enables makers to build and test their robots, 3D printers, smart systems, and other computer-programmed automated machines. Pirseyedi notes that, while the traditional plastic building block sets “are great for quickly and easily making something,” they can’t handle the kind of rigidity and accuracy these automated machines require. UberBlox, he argues, bridges the gap by combining the lower barrier of entry of something like Lego with the higher technical needs of a typical maker.

“Even with today’s readily available aluminum T-slot mechanisms, you still need to cut, drill, mill, fit, re-try, re-cut, [and] deal with a huge number of choices for connecting parts,” explains Pirseyedi. “And [you have to] do all this accurately with tools and equipment that you may not necessarily have easy access to or know how to operate properly. UberBlox eliminates all that. You simply imagine a machine idea within the context of the system, and you start assembling parts, mostly with a single small tool. The supporting electro-mechanic, electronic, and software components then help you bring it to life.”

As for specific examples of what UberBlox might be helpful to produce or prototype, Pirseyedi has suggestions. The big one his team is pushing is 3D printing, with much of the marketing material revealed so far showing how the kit can become a functioning 3D printer. If you really just want a 3D printer, of course, you can buy one preassembled or packaged in a more tailored kit. But UberBlox is for the curious. It’s targeted at people who “have a desire to make their own so that they can learn engineering and technical skills as well as be able to tweak their system however they like,” says Pirseyedi.

Moreover, he adds, UberBlox allows for quick and easy testing of new design ideas for either entire 3D printing systems or portions of them, which is a popular pursuit of many in the maker community, without getting bogged down in the fabrication process. “After all, that is one of the reasons we’ve had such an explosion in interest in low-cost 3D printers in the past couple of years,” he says.

Besides 3D printers, the system could also “easily” be used to build loads of different types of robots, including manipulator arms, rovers, and humanoids, as well as laser cutting and engraving or CNC milling and routing machines.

It isn’t clear yet exactly what parts will be included in UberBlox kits, but they will include both basic blocks and reconfigurable parts, such as motors, moving components, electronics, and “Brain-Box” controllers for do-it-yourself boards, such as Arduino and Raspberry Pi. It sounds like there’ll be multiple configuration options, but the UberBlox team is keeping the details quiet on this and pricing until it launches a Kickstarter campaign later this month.

The upcoming UberBlox Kickstarter will also reveal how the connection mechanism works, and if it surpasses its goal the team may be able to develop a 3D software tool designed specifically for drag-and-drop assembly of virtual UberBlox parts to aid in the design process. Regardless of any stretch goals, the team will release 3D models of UberBlox parts to backers “at some point in time” so that they can play around with them in their CAD or 3D modelling software of choice.

GIZMAG.COM
by  | February 15, 2015

Self assembling robots

As a wise ‘man’ once said: “Autobots, roll out!”

3D-printed robots that assemble themselves?! Imagine the potential!

http://www.livescience.com/46010-robots-self-assemble-when-…

Assembling a future robot could be as simple as heating it up. Two new studies demonstrate how 3D-printed robots could fold into shape and assemble themselves after being exposed to heat.

To make a two-dimensional sheet of material assemble itself into a 3D machine, the researchers used heated sheets of a type of polymer known as polyvinyl chloride, or PVC. These sheets of material were placed between two rigid polyester films  that are full of slits.

When heated, the PVC shrinks and the slits eventually shut, pushing against each other and altering the shape of the PVC. This process bends the material into different shapes, based on the pattern of slits and how the heat interacts with the PVC.

As slits of different widths push against each other, the material will fold into 3D structures, the researchers said.

“You’re doing this really complicated global control that moves every edge in the system at the same time,” Daniela Rus, a professor of engineering and computer science at the Massachusetts Institute of Technology in Cambridge, Massachusetts, whose group conducted the research, said in a statement. “You want to design those edges in such a way that the result of composing all these motions, which actually interfere with each other, leads to the correct geometric structure.”

One of the new studies examines how to create the 2D pattern of slits that make these foldable robots possible, while the other discusses building electrical robot components such as resistors and capacitors from “self-folding laser-cut materials.”

Shuhei Miyashita, a postdoctoral researcher at MIT, specially designed an aluminum-coated polyester sensor that could be attached to therobots once they are fully assembled. The sensor looks like a small accordion, with folds of material that compress and help electrical currents pass through the system.

To enable the robot to move, a motor could be made from a foldable copper-coated polyester coil, the researchers said.

The new studies build upon previous work done by Rus and  another MIT professor, Erik Demaine, on how origami folding techniques could be used to design robots.

The findings were presented at the 2014 IEEE International Conference on Robotics and Automation, which is being held from May 31-June 5 in Hong Kong.

Follow Elizabeth Howell @howellspace, or Live Science on Twitter@livescience. We’re also on Facebook & Google+. Original article on Live Science.

LIVESCIENCE.COM
by Elizabeth Howell, Live Science Contributor   |   May 30, 2014 05:45pm ET