3D printed eggs used to study the art of deception among birds

http://www.sciencetimes.com/articles/6777/20150528/scientists-use-3d-printed-eggs-to-study-the-art-of-deception-among-birds.htm

Scientists Use 3D Printed Eggs to Study the Art of Deception among Birds

3D printing has already established itself within the scientific community. It’s been used to produce tools aboard the International Space Station, replicate body parts for surgical procedures, and now it’s found a new niche among biologists studying bird behavior. It turns out, 3D printers produce mighty fine eggs.

Animal behaviorists at Hunter College of the City University of New York are using 3D printers to produce eggs used in experiments that examine nesting behavior among birds. They’re particularly interested in brood parasites – birds that lay their eggs in other birds’ nests, for the behavior of such birds offers insight into the evolutionary arms race between species.

Successful brood parasites are well-adapted to their deceptive practice, laying eggs that resemble those whose nests they target for takeover. But the foster birds have evolved means of detecting such eggs, based on their size, shape, color, and pattern, and will cast them out of the nests when the interlopers are identified.

“Hosts of brood parasites vary widely in how they respond to parasitic eggs, and this raises lots of cool questions about egg mimicry, the visual system of birds, the ability to count, cognitive rules about similarity, and the biomechanics of picking things up,” says Prof. Don Dearborn, chair of the Biology Department at Bates College, a brood parasitism expert who was not involved in the 3D printing study.

Biologists have been studying brood parasitic behavior for decades, but it was always a challenge to produce realistic eggs for use in their experiments. They tried a variety of materials, such as wood and plaster, but the eggs were expensive and time consuming to produce and a challenge to reproduce consistently.

And that’s where the 3D printers come in.

The scientists from Hunter College used a 3D printer to produce model eggs based on those of the Brown-headed Cowbirds, a North American brood parasite. Some eggs were painted beige to match real cowbird eggs; other were painted blue-green to match eggs of the American robin, a typical target of cowbirds. They were able to fill the model eggs with water or gel, so that the eggs retained the weight and properties of real eggs.

Their experiments were a rousing success. The robins accepted 100% of the blue-green eggs while they rejected 79% of the beige eggs. Similar results were achieved using plaster eggs, but the 3D printed eggs are more consistent and easier to produce. And since they are based on digital models, it makes for easy sharing across scientific communities, which improves the reproducibility of experiments.

“For decades, tackling these questions has meant making your own fake eggs — something we all find to be slow, inexact, and frustrating,” says Dearborn. “This study uses 3D printing for a more nuanced and repeatable egg-making process, which in turn will allow more refined experiments on host-parasite coevolution. I’m also hopeful that this method can be extended to making thin-shelled, puncturable eggs, which would overcome another one of the constraints on these kinds of behavioral experiments.”

“3D printing technology is not just in our future – it has already revolutionized medical and basic sciences,” says Mark Hauber, an animal behaviorist at Hunter College and the study’s senior author. “Now it steps out into the world of wild birds, allowing standardized egg rejection experiments to be conducted throughout the world.”

sciencetimes.com

by May 28, 2015 11:29 PM EDT

Advertisements

3D printing revolutionising space travel

http://europe.newsweek.com/3d-printers-revolutionise-space-travel-within-two-years-324021

3D Printers to Revolutionise Space Travel Within Two Years

NASA are aiming to introduce 3D printers into spacecraft within two years, allowing astronauts to set up permanent habitats on other planets and even print their own food.

In an interview with Newsweek, NASA’s 3D printing chief Niki Werkheiser says the technology will revolutionise space travel by allowing astronauts to be away from year for years on exploration missions without relying on ground control.

Current costs for space transportation are $10,000 per pound of mass. The development therefore has the potential to save millions of dollars as astronauts can travel light and print essentials on demand whilst in space.

NASA is currently developing its largest rocket yet, the Space Launch System (SLS). The SLS is due to make its first test flight in 2017 and Werkheiser says her team are working to get a 3D printer on-board.

So far, Werkheiser’s team at NASA’s Marshall Space Flight Center in Alabama have produced several rocket components and a small wrench with the technology and yesterday the team announced the first successful print of a copper engine part for rockets.

However, they are working on much more exciting projects, including printing parts for a small shelter using substitutes for Martian and lunar sand – the theory being that astronauts could one day use the printers to build themselves habitats on extraterrestrial surfaces.

“The bottom line is being able to print anything you need in orbit. When we live on the ground, we don’t think much about running to Home Depot if something breaks but when you’re in space, even tiny things make a difference,” says Werkheiser.

The space agency is also funding a Texas-based company which is researching printing food, and has already produced prototype results in the form of printed pizza.

Other projects include developing a recycler which breaks down food wrappers into filament which the printer could convert into useful tools like circuit boards and batteries.

Werkheiser is optimistic that commercial applications of the technology means 3D printing in space will not be a thing of the future for long.

3D products are already being touted as offering a solution to homelessness and a means of creating human organs for those in need of transplants.

“The beautiful thing about 3D printing is that you’re going to see a pretty rapid evolution of commercial development. It’s going to happen,” says Werkheiser.

NASA has spent some $3m on the In-Space Manufacturing project which Werkheiser heads up.

The prototype 3D printer used on the International Space Station is the size of a small microwave and prints objects the size of an iPhone 6.

It produces objects by a process known as additive construction, using plastic filament as ink and constructing objects by a layering technique. Instructions are uplinked to the printer from ground control via email.

Werkheiser’s team are working on introducing metal filament to allow the printer to produce sturdier tools.

However, they are still working to overcome certain challenges posed by manufacturing in microgravity – for example, whether the layers of heated plastic form strong bonds when layered on top of each other in the absence of gravity.

Nevertheless, Werkheiser believes the technology will provide the key to allowing astronauts to live in space with the same freedom as on earth.

“This suite of capabilities will enable us to operate and live in space as we do on the ground. You need to get that autonomy in space and this is the secret sauce to getting there.”

europe.newsweek.com

by  |  4/22/15 at 1:45 PM

3D printing being used in disaster relief

http://3dprint.com/56149/3d-printing-disaster-relief/

100117-N-6070S-010

Power to the People – 3D Printing Being Used in Disaster Relief

Dara Dotz is a pioneer in 3D printing in troubled and sparse environments. She’s the founder of iLab Haiti, a project which brought 3D printers as part of an aid package to that country following the catastrophic earthquake that devastated that nation in 2010.

A magnitude 7.0 earthquake struck beneath Port-au-Prince, and aid groups did their best to battle the massive logistical and medical emergency challenges they faced, as the Red Cross estimated that up to 50,000 deaths had occurred, and many more individuals were grievously injured.

Dotz works with Made In Space, a company which has made headlines for building a variety of projects involving 3D printing objects in space, in conjunction with NASA and the International Space Station. She and Eric James, the Director of FieldReady.org, are intent on changing the outcome of communities faced with the problems of recovery from the aftermath of a natural disaster or war. They say that 3D printing promises to revolutionize the way humanitarian-aid supply chains function.

3D printed umbilical cord clamp Haiti

James has nearly two decades of experience in leading disaster relief and development projects, and he’s the author ofManaging Humanitarian Relief: An Operational Guide for NGOs.

Field Ready says that the supply chain for disaster relief projects includes agents, middlemen, functionaries, and bureaucrats who insert themselves into the process of delivering goods and services to affected areas, and that those interactions lead to heavy lead times, and require good information systems and well-trained staff. But they add that all those efforts need to be precisely focused on the needs of disaster affected people.

“To date, the focus has been on stockpiling, distribution of cash and improving basic efficiencies, but there has been little done to transform the situation,” James says. “And so it calls for disruption. Instead of relying solely on the supply chain—what if we could make much of what was needed onsite–or at least nearby? If we can do it in space, we can do it here too.”

James says Field Ready combines 3D printing with low-tech innovation such as “hyper-local” manufacturing to provide aid workers and those affected by disasters with tools to help them overcome the weaknesses of the current system.

FieldReady-dotz

Using 3D printers like the UP Miniand MakerBot Replicator, the team collaborates with health practitioners to design solutions such as medical disposables. They printed a prototype prosthetic hand which uses just five parts, as well as a butterfly-needle holder, a prototype screwdriver, prototype pipe clamps, and bottles. James says that while needed items like those would take weeks–and perhaps even months–to make their way to a disaster area, a few 3D printers and spools of filament can make those items available immediately.

Throughout its history, Haiti has suffered developmental and humanitarian challenges, and the earthquake of 2010 brought conditions there to a tipping point. James says nearly every sector of the country is stressed, and that pioneering aspects of in-situ manufacturing means Field Ready is deploying a team of specialists to Port-au-Prince to take on challenges in select health facilities. A grant provided by the Humanitarian Innovation Fund means Field Ready are poised to work with Haiti Communitere, Ti Kay Haiti, and MamaBaby Haiti to make medical disposables and pilot the use of recycling plastic filament.

According to James, others groups like Oxfam and partners Griffith University and My Mini Factory have similar initiatives underway in Kenya, and the Innovation & Planning Agency (IPA) in Jordan does as well. Yet another group,eNable, has been working to print prosthetic limbs using an all-volunteer-based approach.

“Humanitarian relief is still messy, tough and perplexing,” James says. “Aid is provided in the most difficult places on earth, and relief situations are the outcomes of catastrophic failure–usually, a collapse of cooperation and good governance.”

Field Ready says they hope to alleviate the problems by providing more direct, immediate technological intervention.

In 2013 alone, 334 “country-level natural disasters” affected the world, occurring across 109 countries.

Do you know of any other ways 3D printing technology is disrupting the status quo and solving problems around the world? Let us know in the 3D Printing Disaster Relief forum thread on 3DPB.com.

84d105_83fe489884384532bbd025f9c0255d5d.jpg_srb_p_1043_782_75_22_0.50_1.20_0.00_jpg_srb

iLab Haiti

3dprint.com

by  | APRIL 6, 2015

 

E-mail a spanner into space

Which Other Technology Would Allow You to E-mail a Spanner Into Space?

http://goo.gl/iUbztq

Mr Wilmore with the wrench

Astronauts on the International Space Station use a 3-D printer to make a wrench from instructions sent up in an email.

It is the first time hardware has been “emailed” to space.

Nasa was responding to a request by ISS commander Barry Wilmore for a ratcheting socket wrench.

Previously, if astronauts requested a specific item they could have waited months for it to be flown up on one of the regular supply flights.

Mike Chen, founder of Made In Space, the company behind the 3-D printer, said: “We had overheard ISS Commander Barry Wilmore (who goes by “Butch”) mention over the radio that he needed one, so we designed one in CAD and sent it up to him faster than a rocket ever could have.”

Mr Wilmore installed the printer on the ISS on 17 November. On 25 November he used the machine to fabricate its first object, a replacement part for the printer.

Nasa says the capability will help astronauts be more self-reliant on future long duration space missions.

Mike Chen added: “The socket wrench we just manufactured is the first object we designed on the ground and sent digitally to space, on the fly.

“It also marks the end of our first experiment—a sequence of 21 prints that together make up the first tools and objects ever manufactured off the surface of the Earth.”

The other 21 objects were designed before the 3D printer was shipped to the space station in September on a SpaceX Dragon supply flight.

Analysis: David Shukman, BBC science editor

If a 3D printer can churn out something as useful as a tool in space, what else is possible?

Spare parts, components, even equipment, according to the company behind the printer, Made In Space. And that’s just the start.

As one might expect from an energetic Silicon Valley start-up, the vision is mind-boggling. Already it plans to send a larger 3D manufacturing machine into orbit next year.

The ambition is for Nasa or other space agencies or companies to routinely send their printing orders up to the International Space Station and for a range of objects to be produced.

This would open the way to create hardware not only for the ISS itself but also for equipment to be deployed beyond it, conceivably such as satellites.

And, looking further ahead, the thinking becomes even more radical. Made In Space says it’s been trying out possible raw materials for its printers including a substance similar to lunar soil.

So in theory, a 3D printer despatched to the Moon might be able to dig into the lunar surface, scoop up what is called the regolith, and transform it into the elements needed for a moon base.

That prospect is extremely distant, obviously.

For the moment, the astronauts on board the ISS will be happy to know that if they need a new spanner, they can make one in under an hour.

References:

First 3D printed item in space by NASA

Some space history-in-the-making for you today; the first item has been successfully 3D-printed in space by NASA!

http://www.cnet.com/…/nasa-completes-first-successful-in-s…/

The 3D printer installed aboard the International Space Station has successfully printed its first object: a part for the printer itself.
The International Space Station’s 3D printer is installed, it’s operational — and it’s now produced the first object to be 3D printed in space, completed November 24 at 9:28 pm GMT.

The printer was installed on the ISS as a means of testing the feasibility of astronauts manufacturing their own parts and tools in microgravity; so the first object printed seems rather apropos. It’s a part for the printer itself — a faceplate for the extruder printhead, emblazoned with the logo for Made In Space, the company that designed and built the 3D printer for NASA, and the NASA logo.

“When the first human fashioned a tool from a rock, it couldn’t have been conceived that one day we’d be replicating the same fundamental idea in space,” said Made In Space CEO Aaron Kemmer. “We look at the operation of the 3D printer as a transformative moment, not just for space development, but for the capability of our species to live away from Earth.”

The idea behind on-board manufacturing is to minimise the shipping of parts and tools from Earth — the way astronauts currently receive such items — and expedite the space station’s self sufficiency. The 3D printer installed in the ISS’ Microgravity Science Glovebox is a model the ISS team is using to experiment with the concept.

The first phase of testing will see the astronauts printing out a variety of test coupons, parts and tools. These will be shipped back to Earth to be compared with the same objects printed by an identical printer on the ground, to see how well the printer operates in microgravity. They will be tested for tensile strength, torque, flexibility and other factors. The results of these tests will allow Made In Space to perfect the second iteration of their microgravity 3D printer, which will be shipped to the ISS in early 2015.

“This project demonstrates the basic fundamentals of useful manufacturing in space. The results of this experiment will serve as a stepping stone for significant future capabilities that will allow for the reduction of spare parts and mass on a spacecraft, which will change exploration mission architectures for the better,” said Made In Space Director of Research and Development Mike Snyder, also principal investigator for the experiment. “Manufacturing components on demand will yield more efficient, more reliable and less Earth dependent space programs in the near future.”

CNET.COM
by Michelle Starr | November 25, 2014 4:43 PM PST

The International Space Station – own 3D printer

Check out the first step towards self-sufficiency on the International Space Station; its very own 3D Printer! 🙂

http://www.cnet.com/news/the-iss-gets-its-zero-g-3d-printer/

The International Space Station has received its 3D printer, installed in its Microgravity Science Glovebox to move towards self sufficiency.

Astronauts aboard the ISS will soon be experimenting with additive manufacturing in microgravity, with the installation of the very first 3D printer in space.

Commander Barry Wilmore unpacked and installed the printer, built by Made in Space and about the size of a small microwave oven, in the Microgravity Science Glovebox on board the space station’s Destiny module, over the course of Monday, November 17.

This is the next step towards self-sufficiency for the ISS: a 3D printer capable of operating in microgravity would be able to help the astronauts manufacture their own components and tools, right there on the station.

The 3D printer installed in the MSG isn’t quite that printer yet — the astronauts will be using it to test how well 3D printing works in microgravity, and whether the objects printed will be as accurate as those printed on Earth. The printer will use a relatively low-temperature plastic feedstock, while the MSG will keep the astronauts safe from any potential malfunctions.

The first phase of printing will include a series of engineering test coupons. These will be sent back to Earth to be compared with control samples made by the same printer while it was at NASA’s Marshall Space Flight Center in Huntsville, Alabama, before being sent up to the ISS.

“This is a very exciting day for me and the rest of the team. We had to conquer many technical challenges to get the 3D printer to this stage,” said Made in Space lead engineer Mike Snyder. “This experiment has been an advantageous first stepping stone to the future ability to manufacture a large portion of materials and equipment in space that has been traditionally launched from Earth surface, which will completely change our methods of exploration.”

Commander Wilmore also performed the first critical system checks on the printer to make sure that it is operating as it should. Hardware and software are both in full operating condition.

CNET.COM
by | November 17, 2014 4:21 PM PST

Moon materials as an filaments to 3D printing?

Check out the concept behind self-sustainable SPACE 3D printing, which would lead to 3D printers in space (such as the one on the International Space Station) using materials from asteroids and the moon for 3D printing! 🙂

https://uk.news.yahoo.com/space-3d-printer-could-moon-dust-…

Moon dust may be used in 3D printers in space

This week the first 3D printer to be launched into space docked at the International Space Station, but the company behind the initiative is already thinking far beyond that – it wants to print using moon materials.

3D printing could have a revolutionary affect on space travel, with astronauts capable of printing key tools and parts instead of waiting for resupply ships. It will be both cost- and time-efficient.

But this first 3D printer, which reached the ISS on the latest SpaceX resupply mission, is just the pilot test.

Down the line, Made In Space is eyeing self-sustaining space 3D printing, where astronauts can use the materials from asteroids and other planets as the basis of the product they’re producing.

In the video Made In Space CEO Aaron Kemmer says his company is testing moon dust simulate in the printers specially designed for the ISS.

They may be preparing for that eventuality, but first Made In Space, NASA, SpaceX and all the other organisations with an interest in space manufacturing, need the inaugural 3D printer to work.

3D printing in space is complicated: the lack of gravity causes problems for the printing process, including convection complications, and then of course there’s the emitted noxious gases which won’t work so well in the sealed environment of a space station.

Made In Space’s microgravity is seen as the solution, with NASA signing off on both its safety and integrity.

But just how effectively it serves the 3D printing process in space will determine how fast agencies develop the technology, and how soon we’ll be using moon rocks and dust to make things.

The 3D printer now in residence at ISS was due to be launched last month, but take-off was delayed for a myriad of reasons.

Last week Kemmer said: “Today, we’re all here waiting for a rocket to launch. We were waiting yesterday—and we might be waiting until Tuesday or Thursday.

And this is the problem with the way we do space missions. With our printer, we are changing that. No longer do you have to say, ‘I hope that rocket launches, because those astronauts really need that fix.'”

After this one comes a second-generation printer – Additive Manufacturing Facility – that’s bigger and better able to use strong materials.

Success begets success, and before long we may have astronauts living off of alien land, using out-of-this-world minerals and materials to 3D-print whatever it is they need. 

UK.NEWS.YAHOO.COM
by Zachary Davies Boren, IB Times | Thu, Sep 25, 2014

First 3D printer in space

It’s not just about 3D printing objects FOR space, its now about 3D printing objects IN space!

http://www.foxnews.com/…/world-first-3d-printer-in-space-w…/

The first 3D printer ever to fly in space will blast off this month, and NASA has high hopes for the innovative device’s test runs on the International Space Station.

The 3D printer, which is scheduled to launch toward the orbiting lab Sept. 19 aboard SpaceX’s unmanned Dragon cargo capsule, could help lay the foundation for broader in-space manufacturing capabilities, NASA officials said. The end result could be far less reliance on resupply from Earth, leading to cheaper and more efficient missions to faraway destinations such as Mars.

“The on-demand capability can revolutionize the constrained supply chain model we are limited to today and will be critical for exploration missions,” Niki Werkheiser, manager of NASA’s “3-D Printing in Zero-G” project at Marshall Space Flight Center in Huntsville, Alabama, said in a statement. [3D Printing in Space (Photo Gallery)]

3D Printing in Zero-G is a collaboration between NASA and California-based startup Made in Space, which built the machine that’s heading to the space station this month. The microwave-size 3D printer was cleared for flight in April after an extensive series of tests at Marshall.

3D printers build objects layer by layer out of metal, plastic, composites and other materials, using a technique called extrusion additive manufacturing. NASA hopes Made in Space’s device works normally aboard the station, thus demonstrating that 3D printers can produce high-quality parts in space as well as on Earth.

If that turns out to be the case, replacing a broken part or tool aboard the orbiting lab could be a matter of simply pushing a button.

“I remember when the tip broke off a tool during a mission,” said NASA astronaut T.J. Creamer, who lived aboard the space station from December 2009 to June 2010. “I had to wait for the next shuttle to come up to bring me a new one. Now, rather than wait for a resupply ship to bring me a new tool, in the future, I could just print it.”

It will likely take the 3D printer from 15 minutes to an hour to print something aboard the space station, depending on the size and complexity of the object, researchers said. Blueprints for desired parts can be loaded onto the machine before launch or beamed up from the ground.

“This means that we could go from having a part designed on the ground to printed in orbit within an hour or two from start to finish,” Werkheiser said.

While the space station is the proving ground for this test, NASA officials see great potential for 3D printing beyond low-Earth orbit. For example, deep-space missions could benefit greatly from the technology, because it would be tough to ferry a spare part to a vessel already on its way to an asteroid or Mars.

“NASA is great at planning for component failures and contingencies. However, there’s always the potential for unknown scenarios that you couldn’t possibly think of ahead of time,” said Ken Cooper, principal investigator at Marshall for 3D printing. “That’s where a 3D printer in space can pay off. While the first experiment is designed to test the 3D printing process in microgravity, it is the first step in sustaining longer missions beyond low-Earth orbit.”

FOXNEWS.COM

by Mike Wall, Senior Writer | September 03, 2014