3D printed beef slices?

http://www.straitstimes.com/opinion/do-you-still-need-cows-if-you-can-3d-print-beef-slices

Do you still need cows, if you can 3D print beef slices?

Two scientists look at how Singapore is preparing to embrace two leading technologies – 3D printing and robotics.

Additive manufacturing (AM) or 3D printing, as it is more commonly known, is a term that is becoming more familiar, used not only by large corporations and institutions but also smaller enterprises and even individuals.

Simply put, 3D printing refers to processes that produce a 3D part from a computer-aided design model by adding materials successively, usually in a layer-by-layer fashion. These materials can be made of paper, plastic, metal or even organic materials such as tissue from cells.

3D printing in itself is not new. It has been used for over three decades, such as for printing out prototypes for designs or architectural works. But today, its usage has expanded beyond prototyping. Many industries and people now use 3D printing to make things they want, which include producing unmanned aerospace vehicles (UAVs) used in Aerospace and Defence.

As technology continues to develop and become more widespread, we are led to potentially discover new or more extensive benefits to society. In building and construction, the ability to print complicated design structures within a shorter time and with fewer resources would help to reduce housing shortage in countries like Singapore. Globally, this could also help disaster-struck countries to quickly rebuild affected communities.

Due to its game-changing potential, AM or 3D printing is forecast by The Economist magazine to be the third Industrial Revolution.

Today, manufacturers are already witnessing the positive impact of 3D printing technology in terms of enabling greater customisation while reducing costs and waste.

As products are manufactured on demand, this reduces tooling costs and the need to maintain a massive product inventory typical of traditional manufacturing methods.

From a business perspective, we also see companies evolving towards more flexible and cost-effective business models. Some may choose to focus solely on design and leave customers to manufacture the actual product. Conversely, smaller players can now manufacture their own products instead of relying on larger manufacturing chains. Along with lower investment costs and risks, this has opened doors and created opportunities for new entrants within the manufacturing field. These will shake up manufacturing as we know it today.

Companies that now produce spare parts or equipment for big manufacturers may find themselves squeezed out if the manufacturers find it more worthwhile to 3D print the parts themselves.

Shipping too can change, if ships carry their own 3D machines to print parts, or 3D print their own supplies, eliminating the need to stop at ports for repairs and resupplies.

Even space travel can be revolutionised: One exciting area of potential application is 3D printing in space, which can be used to produce necessities such as food as well as essential tools and spare parts necessary for extensive space missions.

Over the coming decades, 3D printing technology certainly has tremendous potential to revolutionise our next phase of development.

The promise of bioprinting – or the printing of live tissue – is immense. This potentially allows us to 3D print a new organ for transplant. Bioprinting has the eventual goal of improving the quality of life whether for transplant patients or for society at large.

It also has clear applications in food. After all, 3D printing allows us to produce meat for consumption by printing them with layers of animal tissue – without the need for animal husbandry or slaughter.

Bioprinting food will also minimise the risk of diseases such as mad cow disease or bird flu by eliminating the need to rear livestock for human consumption.

With the aim of empowering the average home user, the Blacksmith Group invented the Blacksmith Genesis, the world’s first 3D printer-cum-scanner. As compact as a home printer, the Blacksmith Genesis allows users to scan, edit and print any item up to 6,650 cubic cm in 3D easily. This user-friendly device enables users without much knowledge of 3D software to engineer their own products.

The Blacksmith Group is a spin-off from the Nanyang Technological University’s (NTU) newly established Singapore Centre for 3D Printing (SC3DP).

Supported by Singapore’s National Research Foundation, SC3DP was set up to drive research and collaboration towards growing Singapore’s 3D printing capabilities for the aerospace and defence, building and construction, marine and offshore and manufacturing industries.

Taking it one step further is 4D printing, which refers to the printing of three-dimensional materials with properties that will transform according to external or environmental stimuli, such as time, temperature or humidity.

Possible applications that would prove useful are using it to print the soles of shoes or sofas which can then be easily manipulated to fit the shapes and sizes of human bodies.

4D printing might also be useful for printing structures for transporting across dramatically different environments, such as from earth to space. In this case, imagine if we could print a piece of furniture in a compact format that can be subsequently assembled into a larger, complex structure in space.

Given the rate at which 3D printing technology is progressing, it is not difficult to envision that 50 years from now, we could be living in 3D printed houses, travelling on 3D printed airplanes, wearing 3D printed garments, consuming 3D printed food and much more.

The possibilities are limitless.

  • Professor Chua Chee Kai is the Executive Director, Singapore Centre for 3D Printing, at the School of Mechanical and Aerospace Engineering, Nanyang Technological University.

References:

straitstimes.com

http://www.straitstimes.com/opinion/do-you-still-need-cows-if-you-can-3d-print-beef-slices

Advertisements

3D printing and the new economics of manufacturing

http://www.forbes.com/sites/ricksmith/2015/06/22/henry-ford-3d-printing-and-the-new-economics-of-manufacturing/

Production Equation 1

3D Printing And The New Economics Of Manufacturing

3D printing production is just scratching the surface of the multi-trillion dollar global manufacturing industry. But its dominance is already pre-determined.

This is because modern manufacturing, despite numerous technological and process advances over the last century, is still a very inefficient global system. Today’s world of mass production is based on one simple rule: the more things you make, the lower the cost of each of those things. We have literally pushed this equation to its extreme limits.

This approach was dramatically accelerated by Henry Ford, arguably the most impactful character in the industrial revolution. For starters, Ford proved out the model of mass production. He wasn’t the first to create the assembly line, but he was the first of his time to perfect it. He built massive factories, and greatly standardized his product and processes. He once famously stated, “Any customer can have a car painted any color that he wants, so long as it is black.”  The quote may be familiar, but do you know why only black? It wasn’t due to Ford’s forward-thinking design sense, but rather because black was the only color that could dry fast enough to keep up with his assembly lines.

By 1915 he had reduced the time it took to build an automobile by 90%. By 1916, an astounding 55% of the automobiles on the road in America were Model Ts.

Ford mastered mass production and created the world’s first mass consumer product. But there is another reason why Ford is such an important figure historically.  Henry Ford literally punctuated the industrial revolution. We have all been taught about the industrial revolution as if it were a binary switch. There was a before and an after. We all believe we live safely in the after. This IS the future.

But what if that’s wrong?  What if mass production is not the end of this story, but rather just a stop along the way to something completely different? What if a technology came along that could turn everything upside down all over again?

3D printing is a technology that allows you to create things differently, from the ground up, layer by layer until you have a fully formed 3 dimensional object. Just like you now send a computer file of a document to a printer in your home or office, you can now send a computer file of an object to a 3D printer, and out comes that physical object. Eventually, you will be able to print almost anything you can imagine.

forbes.com

by Rick Smith | JUN 22, 2015 @ 5:11 PM

Industrial revolution!

Educate Yourself About the Upcoming Revolution in the World of Manufacturing!

http://goo.gl/97BSt2

makerbot_660

THE WORLD AROUND us has advanced so much that science fiction is no more a fiction. Moving from prototyping to tooling, additive manufacturing commonly known as 3D printing has expanded to full-scale end-part production and replacement part production. Be it a 3D printed bionic ear enabling you to hear beyond human hearing frequencies, 3D printed cake toppings taking the culinary innovation to another level, 3D printing your dream house in just a few hours — 3D printing is revolutionizing every walk of life. According to Wohlers Report 2014, the worldwide revenues from 3D printing are expected to grow from $3.07 billion in 2013 to $12.8 billion by 2018, and exceed $21 billion by 2020.

No wonder one of the biggest players in printing, HP (Hewlett-Packard), entered the field with a faster, cheaper version of 3D Printer focused on Enterprise Market. So is this the first step from a “revolutionary” Maker Movement to an Industrialized Scale that technology eventually needs to survive for the long term? To a world of taking a 3D physical product or an idea to the Digital World, which happens to be 2D and then back out to 3D physical form anywhere across the globe, where an IP address and enough bandwidth is available to be able to transmit the Digital Model. This does have significant disruption potential. How much and when this will happen will of course depend on several factors across economics, technological feasibility, policies and of course politics. So are we finally ready to go beyond the growth that the DIY enthusiasts have driven from 200% to 400% in personal 3D printers between 2007 and 2011 according to a McKinsey Study.

Before we pose those questions, let’s look at what has been already achieved or near achievement across markets beyond printing prototypes, toys and models.

In the field of medicine, 3D printing of complex living tissues, commonly known as bioprinting, is opening up new avenues for regenerative medicine. With an improved understanding of this technology, researchers are even trying to catalyze the natural healing mechanism of the body by creating porous structures that aid in bone stabilization in the field of orthopedics. This cutting edge technology in conjunction with stem cell research is likely to revolutionize the made-to-order organs, cutting across the transplant waiting lists. Even intricate human body parts like the brain can be replicated using the 3D technology to aid in complex medical surgeries through simulation.

The Aerospace industry, an early adopter of this technology, is already designing small to large 3D printed parts saving time, material and costs. 3D printing also offers the biggest advantage critical to the aerospace manufacturers – weight reduction. It also accelerates the supply chain by manufacturing non-critical parts on demand to maintain JIT (Just-in-time) inventory. The power of additive manufacturing can do away with several manufacturing steps and the tooling that goes with it.

The Automobile world is already witnessing crowd-sourced, open-source 3D printed vehicles driving off of the showroom floors. Local motors caught the audience by surprise by 3D printing its car ‘Strati’ live at the International Manufacturing Technology Show (IMTS) in Chicago. So how can an auto part be a challenge by any means? Are we headed towards making that exhilarating smell of burnt rubber a thing of the past? Something future generation will ask, what the big deal about that was? How about robots with muscle tissue powered parts?

The 3D printed “bio-bot,” developed by the University of Illinois at Urbana-Champaign, is likely to be really flexible in its movements and navigation. (So, forget about the much jibed about robotic movements.) With this breakthrough, researchers are contemplating on the possibility of designing machines enabled with sensory responding abilities to complex environmental signals.

So where does all this lead us?

The excitement growing around the 3D technology is palpable and rightly so not without a reason. 3D technology surely shifts the ownership of production to the individuals and brings to light most of the inefficiencies of mass-production. Of course, not everything can be 3D printed, but a wider use of 3D printers might reduce need for logistics as designs could be transferred digitally leading to a decentralization and customization of manufacturing. 3D scanning as an enabling technology will also help in creating an ecosystem to support users. The layer by layer manufacturing by 3D printing has the dexterity to fabricate intricate geometries efficiently and hence reduces the wastage caused by traditional manufacturing methods.

By reducing the cost and complexity of production, 3D printing will force companies to pursue alternate ways to differentiate their products. It will also help companies enhance their aftermarket services by facilitating easy on-demand manufacturing of replacement parts. As manufacturing is moving closer to the consumers, the consumer is fast transforming into a prosumer.

There are, of course, hurdles to overcome, not the least entrenched incumbency and policies, which will be governed by more short term economic and social impacts as the positive outcomes of such revolutions are often difficult to envision.

McKinsey has estimated a potential of generating an economic impact of $230 billion to $550 billion per year by 2025 with various 3D applications, the largest impact being expected from consumer uses, followed by direct manufacturing. As the breadth of application of 3D printing continues to grow, it will be interesting to observe how the industries will mix with and influence the future of additive manufacturing.

Almost every sector of the industry is riding on the 3D opportunity bringing innovations to reality and the world is ready to hop on to a decentralized industrial revolution. Are you?

References: