3D printed parts for a car

http://www.stuff.co.nz/motoring/news/71751824/the-car-of-the-future-to-use-3d-printed-parts

Car parts could use 3D printing techniques in the future, according to BMW

The car of the future to use 3D printed parts

Car companies will soon make use of 3D printing to manufacture parts, bringing benefits in cost and strength that will improve the affordability and driving character of future vehicles, according to BMW’s head of lightweight design Florian Schek.

While most vehicle manufacturers use the advanced technology during the development and design phase to quickly create prototype parts or models, Schek believes it won’t be long before the technology is transferred into end-consumer production techniques.

He admitted that it is likely to be used on low-volume speciality vehicles first as the time needed to mass-produce parts by 3D printing is not as quick as conventional methods such as casting and forging for metals, or as affordable as plastics. But he said the rapid advances in the technology will ensure its future application is viable.

“We have that already in prototyping,” he told Drive.

“But there is definitely a future for it in mainstream production. It will come.

“I think it will take some time in high-volume production, but it is not that far away for specialist models like the i8. We can do some very interesting things with 3D printing that we cannot do with other methods and it is quite exciting about the benefits, both in terms of design and structure.”

Schek said the benefits of 3D printing structural elements – including major components such as shock absorber towers – could see improvements in weight reductions and rigidity, as the printing process could create components more intricately.

“With 3D printing we can see advantages in being able to build parts with strength where it is needed and not in places where it isn’t, and this will help improve decreasing weight. We can design the part according to the forces that are running through it, this will be a big step forward for some areas,” he told Drive during the launch of the all-new BMW 7-Series, which uses different materials in its skeleton – including steel, aluminium and carbon fibre – to reduce weight and increase overall strength.

“I can also see it eventually improving time to production in some circumstances too, because some components currently need to go through many processes to be ready for assembly whereas with 3D printing it is designed to be a finished product.”

stuff.co.nz

by ANDREW MACLEAN | 06:00, September 6 2015

Advertisements

3D printing – the future of global food?

http://www.theglobeandmail.com/report-on-business/rob-commentary/is-3-d-printing-the-future-of-global-food/article24981139/

Is 3D printing the future of global food?

A few weeks ago, Londoners were able to eat at the world’s first 3D-printed pop-up restaurant. In early June, a German-based company introduced the word’s first plug-and-play food printer, which may be ready for shipping as early as next year. With the cost to produce this technology dropping, making it increasingly accessible, 3D printing could fundamentally change our relationship with food.

Simply put, the process uses ingredients to generate three-dimensional meals by placing layers of compounded food on top of each other. Since 2012, the food industry has used this technology to produce products, including candy, chocolate, pizza, noodles and even crackers. Despite its relative novelty, many companies are recognizing its potential – and recognizing how 3D food printing can revolutionize our global food systems.

In particular, 3D printing could radically alter food production practices by enabling companies to manage resources more responsibly and reduce waste across the food continuum – whether you are a processor, a distributor or a consumer with leftovers. Indeed, many well-known agribusiness corporations have already dedicated a great deal of time and research on 3D systems. There is a potential benefit to consumer health, as well. For example, PepsiCo recently announced that it is using 3D printing to develop a healthier potato chip.

Beyond manufacturing, 3D printing could also boost culinary creativity by allowing renowned chefs to create shapes and forms that were previously thought impossible. Some have argued that it can give the food-service industry the ability to customize products based on individual nutritional needs.

Given the demographic challenges we face in coming decades, this can become a key benefit. In Germany, many nursing homes already produce a pureed 3D-printed food product called smoothfoods to residents who have difficulty ingesting food, or even chewing them. Regular smoothies have been on the menu, but haven’t proved as popular. Elderly residents eating smoothfoods can receive all the nutrients they require while enjoying an aesthetically pleasing meal. As a result, they can live healthier, higher quality lives.

More significantly, some experts believe 3D printing could effectively address global food security challenges. Ingredients such as algae, duckweed and grass could be imbedded into familiar dishes. A recent study in Holland added milled mealworm to a shortbread cookie recipe through 3D printing – most would agree that a cookie-shaped food product is much more appetizing than the look and feel of a worm. By using insects and other protein sources, the growing need for protein the globe is currently experiencing, which adds increased pressure to beef and pork prices, could be mitigated.

3D food printing does still face major obstacles. The technology remains expensive and complex. The engineering required to produce food is much more sophisticated than producing objects with metal and plastic. Food scientists acknowledge how difficult it is to effectively make edible meals in 3D food printing – ingredients in food interact in many complex ways, particularly with meats. At this point, 3D food printers are not known to produce great tasting food, and still do not have the overwhelming endorsement of the culinary world.

However, the technology is improving at an incredible pace, allowing us to believe that very soon, anything might be possible.

The concept of 3D printed food is foreign to many of us, and may challenge our collective appreciation of where food comes from, and how it is produced. Let’s face it – when it comes to food, we are all traditionalists to some extent, protective of our food heritage. Printing food is a drastic departure from the art of cooking as a way of celebrating nature’s bounty.

But the reality is that in just a few years, we will have more than nine billion people to feed. One way to responsibly address global food security challenges is to consider technology as a primary source for sustainable solutions. Treating alternatives to established food production systems as mere fads may not be the best approach.

After all, the future of the dinner table may be as different, and as simple as “Press print and eat.”

theglobeandmail.com

by SYLVAIN CHARLEBOIS | Jun. 17, 2015 10:39AM EDT

3D printed eggs used to study the art of deception among birds

http://www.sciencetimes.com/articles/6777/20150528/scientists-use-3d-printed-eggs-to-study-the-art-of-deception-among-birds.htm

Scientists Use 3D Printed Eggs to Study the Art of Deception among Birds

3D printing has already established itself within the scientific community. It’s been used to produce tools aboard the International Space Station, replicate body parts for surgical procedures, and now it’s found a new niche among biologists studying bird behavior. It turns out, 3D printers produce mighty fine eggs.

Animal behaviorists at Hunter College of the City University of New York are using 3D printers to produce eggs used in experiments that examine nesting behavior among birds. They’re particularly interested in brood parasites – birds that lay their eggs in other birds’ nests, for the behavior of such birds offers insight into the evolutionary arms race between species.

Successful brood parasites are well-adapted to their deceptive practice, laying eggs that resemble those whose nests they target for takeover. But the foster birds have evolved means of detecting such eggs, based on their size, shape, color, and pattern, and will cast them out of the nests when the interlopers are identified.

“Hosts of brood parasites vary widely in how they respond to parasitic eggs, and this raises lots of cool questions about egg mimicry, the visual system of birds, the ability to count, cognitive rules about similarity, and the biomechanics of picking things up,” says Prof. Don Dearborn, chair of the Biology Department at Bates College, a brood parasitism expert who was not involved in the 3D printing study.

Biologists have been studying brood parasitic behavior for decades, but it was always a challenge to produce realistic eggs for use in their experiments. They tried a variety of materials, such as wood and plaster, but the eggs were expensive and time consuming to produce and a challenge to reproduce consistently.

And that’s where the 3D printers come in.

The scientists from Hunter College used a 3D printer to produce model eggs based on those of the Brown-headed Cowbirds, a North American brood parasite. Some eggs were painted beige to match real cowbird eggs; other were painted blue-green to match eggs of the American robin, a typical target of cowbirds. They were able to fill the model eggs with water or gel, so that the eggs retained the weight and properties of real eggs.

Their experiments were a rousing success. The robins accepted 100% of the blue-green eggs while they rejected 79% of the beige eggs. Similar results were achieved using plaster eggs, but the 3D printed eggs are more consistent and easier to produce. And since they are based on digital models, it makes for easy sharing across scientific communities, which improves the reproducibility of experiments.

“For decades, tackling these questions has meant making your own fake eggs — something we all find to be slow, inexact, and frustrating,” says Dearborn. “This study uses 3D printing for a more nuanced and repeatable egg-making process, which in turn will allow more refined experiments on host-parasite coevolution. I’m also hopeful that this method can be extended to making thin-shelled, puncturable eggs, which would overcome another one of the constraints on these kinds of behavioral experiments.”

“3D printing technology is not just in our future – it has already revolutionized medical and basic sciences,” says Mark Hauber, an animal behaviorist at Hunter College and the study’s senior author. “Now it steps out into the world of wild birds, allowing standardized egg rejection experiments to be conducted throughout the world.”

sciencetimes.com

by May 28, 2015 11:29 PM EDT

The future of food!

http://www.digitaltrends.com/cool-tech/3d-food-printers-how-they-could-change-what-you-eat/

3D Printed color flavored sugar

WHY 3D FOOD PRINTING IS MORE THAN JUST A NOVELTY; IT’S THE FUTURE OF FOOD

It was Marcel Boulestin, the first cook-turned-television star from the BBC’s 1937 show Cook’s Night Out, who insisted that cooking was not chemistry but an art. “It requires instinct and taste rather than exact measurements,” he said.

If only he could see the world now.

It’s 2015, and 3D printing, a technology long priced beyond many people’s reach, is quickly undergoing democratization. So much democratization that companies are trying to 3D print all kinds of new things, including food.

Think about the replicators on Star Trek and the many other machines that litter science fiction movies, which prep, cook, and serve meals on command. This could actually be our future. 3D food printing has the potential to revolutionize food production by boosting culinary creativity, food sustainability, and nutritional customizability, but technical and market barriers still face it in the years to come.

3D printing food ain’t easy

Most 3D printers work by slowly depositing layers of material, one on top of the other, until an object is constructed. The process is called “additive manufacturing,” and it uses deposition printers. Others bind layers together with adhesive — they’re called binding printers.

3D food printers are more difficult to explain. Hod Lipson, director of Cornell University’s Creative Machines Lab, laid out the three dominant methods of printing food at the 2015 Inside 3D Printing conference in New York City, which are nozzles, powdery material, and lasers. “You can think of it as the ‘RGB of food,’” he told Digital Trends.

Many systems mix and match those approaches. The 3D Systems ChefJet crystalizes thin layers of fine-grain sugar into virtually any geometric configuration, while Natural Foods’ Choc Edge dispenses chocolate from syringes in beautiful, melty patterns. The Foodini uses fresh ingredients loaded into stainless steel capsules to prepare a surprisingly wide array of dishes. Its latest model isn’t a soup-to-nuts solution — it only prints raw doughs, which then must be cooked as normal — but the printer can partially make pizza, filled pasta, quiche, and even brownies.

None of these machines will be next in line for the Bocuse d’Or chef championship, though. Emilio Sepulveda, co-founder of Foodini maker Natural Machines, has said publically that food synthesizers like those seen in Star Trekand The Fifth Element will take “many more years” of development.

Choc Edge Choc Creator V1

But that’s not stopping early adopters. Some German nursing homes serve a 3D-printed food product called Smoothfoods to elderly residents who have difficulty chewing. Purees, the conventional alternative, typically aren’t very appetizing, which sometimes leads to under eating. Residents “get malnourished in certain cases,” said Kjeld van Bommel, a research scientist at the Netherlands Organization for Applied Scientific Research, in an interview with the Washington Post.

The tastier Smoothfoods — made of mashed carrots, peas, and broccoli, which 3D printers congealed with an edible glue — are already a hit; 1,000 of the country’s facilities now serve them daily.

3D food printers invade the gourmet world

On the opposite end of the gastronomic spectrum, 3D food printers are beginning to breach gourmet spaces. Earlier this year at the Consumer Electronics Show (CES) in Las Vegas, the Culinary Institute of America (CIA) unveiled a partnership with 3D Systems, maker of the ChefJet. The CIA plans to begin beta testing with the ChefJef, and 3D Systems will provide CIA students with fellowship and internship programs at the company’s headquarters in Los Angeles.

Tom Vacarro, dean of Baking and Pastry Arts at CIA,spoke to WAMC Northeast Public Radio about the arrangement. “We just took that ran with it and said, okay, we could do many different things with these printers and here’s our ideas” he said. “[You can] design your mold on the screen, and hit print, and out it comes. It just shaves off all of that back-and-forth time.”

3D Systems Creative Director Liz von Hasseln, speaking at CES, said she sees food printing “as something that … will become a part of the culinary fabric.”

“I think the way that happens really powerfully is when it impacts the cultural ritual of eating, which is actually a really powerful part of being a person in the world,” she clarified. Hasseln predicts most of her team’s culinary experiments, which include shaping chocolate and sugar into wedding cake toppers and cocktail garnishes, are just the beginning. Cornell’s Lipson agrees.

3D printed sugar cake topper - blue china

“These are things that no pastry chef, no confectionary chef could ever make,” he said. “They represent a new design space in food. We’re getting to that point of artistry.”

Food printing moves beyond the kitchen

Other chefs are looking beyond the kitchen. Dutch food designer Chloé Rutzerveld documented the creation of cracker-like yeast structures containing seeds and spores that sprout over time, and thinks the snack he synthesized and those like it — natural, transportable products printed efficiently — could someday transform the food industry. And he’s not alone.

Some experts believe food printers could minimize waste by using cartridges of hydrocolloids, substances that form gels with water. Those same machines, they theorize, could also use unpalatable but plentiful ingredients — ingredients such as algae, duckweed, and grass — to form the basis of familiar dishes. In a study headed by Van Bommel, scientists added milled mealworm to a shortbread cookie recipe. “The look [of the worms] put me off, but in the shape of a cookie I’ll eat it,” he said in an interview with Popular Mechanics.

To that point, people are very conservative when it comes to food, Lipson said. “Most people will only enjoy foods that are very similar to what they’ve had before. We have a very deep, visceral reaction to foods we don’t recognize,” he said. 3D food printers could be used to make the unappetizing, appetizing.

“Consider a food source that’s not something you’d want to eat in its raw form but a good source of protein, like insects,” Lipson said. “There’s an interesting advantage there — being able to make something that looks and tastes good from something that doesn’t.”

Anajan Contract, an engineer who’s currently developing a pizza-making printer with a $125,000 grant from NASA’s Small Business Innovation Research program, envisions a machine that can produce food from capsules of powders and oils with shelf lives up to 30 years. He believes such a printer would not only reduce the environmental impact of cooking, but also offer a renewable form of sustenance to a growing world population.

Chloé Rutzerveld Edible Growth

“I think, and many economists think, that current food systems can’t supply 12 billion people sufficiently,” he told Quartz. “So we eventually have to change our perception of what we see as food.”

Beyond sustainability, 3D food printing holds great promise for nutrition. Lynette Kucsma, CMO and co-founder of Natural Machines, says printers like the Foodini can help people cut down on the amount of chemical additives in their food and reduce overconsumption. The food printers of tomorrow could even allow customization at the macronutritional level, allowing users individualize the amounts of calcium, protein, omega-3, and carbohydrates in their meals.

“You’ll be able to say when I wake up in the morning I want the printer to print my breakfast and I want to have the right amount of trans fats, whatever we need,” said Lipson.

The many obstacles ahead

But 3D food printing has many challenges to overcome, chief among them speed. Devices like the recently announced Carbon3D can fabricate a mind-boggling number of objects in minutes, but that level of advancement hasn’t trickled down to food printers yet. The most common designs require successive layers of ingredient to cool, leading to exceedingly long wait times for some foods.

Many food printers have chocolate, dough, and sugar nailed, but more complicated products like meat are tougher to master. “Printing in food materials is a lot more difficult from an engineering point of view than plastic of metals,” said Lipson. “They interact with each other in very complex ways.”

That’s not to say producing them isn’t feasible. Modern Meadow, a company in New York, raised $10 million in funding to research the production of printable biomaterials — but achieving the right texture and flavor is a lot harder. And even if scientists are able to closely replicate natural beef, consumers might not bite; in a survey by GlobalMeatNews.com, only 34 percent of respondents said they’d even try 3D-printed meat.

There’s also the issue of expectations. The Star Trek replicator comes to mind when many people think about food synthesizers, but such a device would hardly be practical — a simple vegetable, like a tomato, would likely require tens of millions of different ingredient cartridges alone. “It sounds simple to say ‘we’ll have a fat cartridge,’ but there are hundreds of kinds of fats,” van Brommel explained.

And how does the culinary world at large feel about 3D food printers? I’ll let Tony Tantillo, food expert and contributor to CBS in New York, expresses a sentiment felt by many: “Those two things shouldn’t be together. ‘Printed food’ for a magazine, yes. But to eat? Nah, nah.” Vacarro thinks they might have a place… in cheap in-and-out joints. “If I think about what’s happening in fast food, there might be something there where some fast foods are printed instead of handmade,” he said.

Natural Machines Foodini

But perhaps like any new technology, 3D food printers just take some getting used to. “When people first heard about microwaves they didn’t understand the technology,” Lynette Kucsama, Chief Marketing Officer at Natural Machines told Fortune. “Now 90 percent of households have microwaves.”

3D food printers may not produce great-tasting food right now, or be able to cook meals from scratch. Or have the wholehearted endorsement of the epicurean elite. But they’re getting better every year, and what they promise — sustainable, nutritional perfection — is worth the pursuit.

“I don’t see 3D food printing as a novelty. I see it as something that really will become a part of the culinary fabric for years to come,” von Hasseln said recently.

A lot changes in 70 years. Boulestin, like any great chef on the bleeding edge of gastronomy, would understand that.

digitaltrends.com

by | April 26, 2015

3D printed car models from children’s sketches

Breathing Life Into Simple Sketches: A Japanese Company is Making Every Child’s Dream Come True!

http://3dprint.com/32854/3d-printed-cars-kids-designs/

kidcar9

The future of 3D printing lies in the hands of our youth. It will be today’s school-aged children who grow up understanding the concepts behind 3D modeling and 3D printing better than most of us who are currently employed in the workforce. Hopefully with 3D printing curricula in schools, and a growing understanding that the technology holds tremendous potential, our children will be the ones to really reap the rewards of the technology. It will be these same children who will be working for the companies that do for 3D printing what the Googles, Apples, and IBMs did for personal computing.

In Japan, 3D printing is beginning to really take off. One company, called t-o-f-u design, understands the importance of teaching children about this technology. In collaboration with Inter-Culture, at the 2014 Maker Faire in Tokyo, t-o-f-udecided to try something very unique, when it comes to 3D printing. They allowed 11 children, between the ages of 4 and 8 years old, to design a side view of a car that they would like to have fabricated on a 3D printer. They were merely asked to draw a profile of a vehicle from one side, and then t-o-f-u and company were to do the rest.

 

kidcarfeatured

“We are actually full time car designers [for a] major Japanese car company,” Park tells 3DPrint.com. “We created this design unit to create fun and meaningful educational workshops for kids and also to do more collaboration projects with other creative talents. It is part of our learning experience as well.”

Using Autodesk Alias, t-o-f-u was able to create digital 3D models of the kids’ cars. They then had INTER-CULTURE 3D print the designs using a 3D Systems Sinterstation HiQ. Once the cars were 3D printed, the kids were then asked to color them using special markers.

kidcar3

The end result? 11 separate 3D printed cars that featured moving wheels, and an individuality about them only possible via 3D printing. The cars, which were exhibited at the Tokyo Maker Faire, garnered quite the attention from show attendees.

kidcar7

The children were also able to push their cars around a track to see just how fast they could go.

“Since we made only a one course race track, we could not race them, but all the cars drive perfectly,” explained Park. “So we had [the kids] drive them one by one, and they were super excited to see their own designed cars moving!”

Now with this project complete, t-o-f-u is looking toward future projects, including collaboration with other large 3D printing companies. Park tells us that they are in talks with Materialise Japan, and they are in the process of working on another kids design workshop that will take place in the middle of January.

kidcar6

What do you think about this unique way of using 3D printing to get kids involved with and excited about the technology? Discuss in the 3D printed kids cars forumthread on 3DPB.com.

kidcar5

kidcar2

3DPRINT.COM
by  | DECEMBER 23, 2014

3D printed an artificial mind?

Watch Out Mankind! The Future of 3D Printing might Propel Artificial Intelligence to the Next Level..

http://www.slate.com/…/_3d_printing_an_artificial_mind_migh…

FT-141211-brain

I’m an artificial-intelligence skeptic. My problem isn’t with the software, but the hardware. Current computer technologies may give us faster, lighter laptops, but AI needs more than the PC equivalent of go-faster stripes—it needs a revolution in how we build processors. Such a revolution may be just around the corner though. As I discuss in a new article in the journal Nature Nanotechnology, the convergence of technologies such as 3-D printing, advanced processor architectures, and nanotechnology are opening up radical new possibilities in how we might construct brain-inspired computers in the future.

If what we think of as the human mind is the product of a biological machine (albeit a complex one), there is little to suggest that we won’t one day have the ability to emulate it. This is what’s driving artificial intelligence research and the emergence of computers like IBM’s Watson that are getting close to thinking like a person. Yet powerful as Watson is, current manufacturing techniques will never enable such technologies to become ubiquitous.

It’s a problem of dimensions.

Imagine drawing five points on a piece of paper and trying to join each point to every other, without any of the interconnecting lines touching. You can’t do it. A second piece of paper layered over the first helps make the connections. But the more points you add and the more connections there are, the harder it gets to connect every point to every other one.

It’s a simple illustration of how hard it is to replicate the physical structure of the human brain—a 3-D matrix of billions of neurons tied together by hundreds of trillions of synaptic connections. Conventional manufacturing techniques can get us partway there. For instance, companies like IBM are pushing the limits of conventional approaches using to create brain-like processing architectures. But like the points on the paper, the technology is still inherently two-dimensional, meaning that additional complexity comes with a massive price tag.

If brain-inspired processors are to become an everyday reality, we’ll need radically different manufacturing processes.

This is where 3D printing comes in. Complexity in 3-D printing is cheap. And, as the name makes clear, it’s in three dimensions. To illustrate how powerful this is, go back to the points on the paper problem, and imagine you can now place not five, but 5 million points, anywhere within a volume of space about the size of a gallon of milk. Now imagine every point being connected to every other, without any of the connections overlapping. The tangle of threads and points you’re visualizing will be incredibly complex. But it’s not totally beyond the realms of possibility.  Although the level of interconnectivity is far less in your skull, this type of massively interconnected structure is reminiscent of what is seen in the human brain.*

Now imagine that you could take the equivalent of a brain scan of this tangle of threads and points, one slice at a time, then feed each slice to a 3-D printer. What you’d get would be a physical model of a brain-inspired structure.

Of course, it would just be a model made out of plastic or metal. Transforming it into a working artificial brain would require reach of those points to be a functioning artificial neuron, and each of the connections to emulate biological axons and synapses.* The technology to achieve this doesn’t yet exist. But it isn’t that far away. For instance, Memristors, a new type of electronic component, are being explored as the basis of artificial neurons. If these could be 3D-printed, it may be possible to begin to construct simple three-dimensional brain-like computers.

Unfortunately, future 3D computer chips have a bigger problem that needs to be overcome. Processors generate heat. And high-performance processors generate a lot of it. In three dimensions, heat removal becomes one of the biggest barriers to developing brain-like processors.

Human brains have the same problem—a fever of just a few degrees can be life-threatening. Our bodies have evolved to handle this by removing excess heat through an intricate network of blood capillaries. Unfortunately, creating a similar heat management system using conventional manufacturing is incredibly challenging. Not so with 3D printing, though. Because complexity is cheap with 3D printing, a secondary fluid-based heat-management network would be relatively simple to add to a three-dimensional brain-inspired architecture.

Of course many more technological challenges to 3D printing an artificial mind remain, including the ability to 3D print functional components. Yet here, the field of nanotechnology is opening the door to achieving just this. The convergence between 3D printing and nanotechnology that will allow functional devices and processing architectures to be manufactured using multiple materials isn’t there yet. But it’s not inconceivable that, one day, my skepticism will prove to be unjustified, and anyone will be able to 3D print the modern day equivalent of Isaac Asimov’s positronic brain.

Correction, Dec. 15, 2014: This blog post originally misidentified axons as axions when discussing brain architecture. It also implied that, in the human brain, all neurons are connected to all others. Each of the roughly 100 billion neurons may be connected to as many as 10,000

SLATE.COM
by Andrew Maynard | DEC 11 2014 10:38 AM