First 3D printed knee for cat!

Cyrano the cat gets a second chance to be able to use a leg deteriorated from bone cancer again, with the help of the first 3D printed knee joint ever made for cats! 🙂

http://www.engineering.com/…/3D-Printing-Creates-the-Worlds…

3D printing, medicine, cat, surgery

A Weighty Dilemma

It’s the kind of diagnosis you dread. When Cyrano developed bone cancer in his left hind leg, his owners wanted to get him the best treatment possible to bring him back to full health. After successful radiation treatment that eliminated the tumour, Cyrano went into full remission. Unfortunately, because of the invasive nature of the cancer, Cyrano was left with bone deterioration in his distal femur and he was unable to use his painful knee joint. In cases like this, surgeons normally choose to amputate the affected limb; however, at 26 lbs, Cyrano wouldn’t be able to support his weight with only three legs. Undeterred, Cyrano’s owners enlisted the help of experienced veterinary surgeon and orthopaedic specialist Dr Denis Marcellin-Little and his long-time collaborator Ola Harrysson, Professor of Industrial and Systems Engineering at North Carolina State University to create a custom solution for their beloved pet.

Getting Cyrano Back on His Feet

3D printing, medicine, cat, surgery

Dr Marcellin-Little and Prof Harrysson have worked with Materialise using Additive Manufacturing in surgeries for over 10 years. With amputation out of consideration, they felt that 3D Printing could provide an ideal solution for Cyrano because of its ability to create small but detailed parts to exacting specifications. Cyrano would thus become one of the very first cats to receive a miniature, limb-sparing total knee arthroplasty. Starting with CT scans of both hind legs, Dr Marcellin-Little and Prof Harrysson used Materialise’s Mimics Innovation Suite to generate accurate 3D models of Cyrano’s leg. Adapting the design of a knee implant used in dogs, in collaboration with BioMedtrix, an animal implant company, they then created a miniature implant that fit to the exact anatomical structure of Cyrano’s leg, and the surgical plan needed to successfully realize the procedure. Because of the small size of the bones, the integrated ability of the Mimics Innovation Suite to engineer parts on a personalised anatomical model facilitated a process that would have otherwise been extremely difficult to manage and perform accurately.

Building Strength and Integration Features Into Implants

Knowing the bone structure around the joint was weak, the implant was designed with stems that would anchor it into the bones. Materialise technology partner EOS then printed the implant using cobalt chromium, a metal strong enough to support Cyrano’s weight and the wear and tear that daily use would exert on the thin parts. Building the implant by Direct Metal Laser Sintering meant that mesh and porous areas that would promote integration of the implant into the bone could also be built into the piece as it was being created. These features, only achievable using Additive Manufacturing, provide enhanced long-term stability over traditional implants, giving surgeons a new option for non-standard cases such as Cyrano’s that can be tailored exactly to their needs. Since his surgery Cyrano has returned to his family, and although he now walks with a limp, he can move freely again with full use of his joint. With 3D Printing now entering the veterinary realm, cats are one step closer to experiencing their full nine lives.

References:

3D printing used in Opel cars

Take a look at how Opel are using 3D printing to make life at their assembly plants cheaper yet better!

http://www.engineering.com/…/Tools-from-3D-Printer-Make-Car…

opel, jigs, fixture, automotive

For some, it may still seem like a long way off, but it’s already part of everyday life at Opel: assembly tools produced by a 3D printer are an increasingly important part of the production process. A six-strong team led by Virtual Simulation Engineer Sascha Holl prints plastic assembly tools in Rüsselsheim which are used in Opel manufacturing plants across Europe. Cheaper and quicker to produce, these tools are being used at Eisenach for the assembly of the ADAM and its new ADAM ROCKS stable-mate. And this is just the beginning – Opel experts predict the use of tools from a 3D printer will continue to grow. “In the future, more and more 3D assembly tools will be integrated into the production process,” says Sascha Holl.

For production of the ADAM ROCKS, to be launched in September, the Eisenach carmakers use an assembly jig – a specific, fixed frame – made by a 3D printer to produce the vehicle name logotype on the side window. And for the windshield, a 3D-printed inlet guide is also used to simplify the mounting process and help ensure a precise alignment. Other tools from the printer are used to fasten the chrome step plate on ADAM ROCKS door openings and install the standard Swing Top canvas roof. Around 40 such assembly aids and jigs are used in Eisenach.

This equipment was developed on the computer during the development phase of ADAM ROCKS. “It enables us to quickly adapt the parts. If something changes on the vehicle, we can easily modify the tool with just a few clicks,” explains Holl. “The 3D printing process enables us to produce every imaginable form and shape. Unlike conventional manufacturing technology, we don’t have to accept any limitations.”

The Virtual Engineering Team in Rüsselsheim only has to reach into their bag of tricks when it comes to the maximum size of parts built. Using sophisticated technology to join a number of smaller elements, it is possible to produce larger parts. For instance, when developing an assembly aid for the side sill or the rear spoiler of ADAM ROCKS.

During 3D printing, plastic is melted and laid down in successive layers, each just 0.25 mm thick. The plastic used is light, robust and versatile. Hollow spaces and overhangs are automatically treated with a filling material, which is later washed away in a type of dishwasher. “The process is comparable to bridge or balustrade construction,” says Holl. “There high or protruding elements must also be shored up and supported until everything has hardened off. Only then is the supporting framework removed.”

The small number of jigs required in final assembly was previously made by hand in an elaborate process using a milled cast and resin. Thanks to 3D printing, the production cost of these aids is now reduced by up to 90 percent. In addition, the printed tools are ready to use after just about eight hours, and are up to 70 percent lighter in weight. Another advantage is that these aids can be mechanically and chemically processed. For example, they can be drilled, milled, sanded, varnished and bonded, or connected and combined with various other materials. Ergonomic fine-tuning can also be carried out on a PC in a matter of minutes. “We can adapt the tools for each assembly situation, as well as make them user-friendly for our colleagues on the line,” adds Holl.

Production of the Opel Insignia and Cascada convertible also benefits from 3D printer tools, which will be introduced step-by-step for the assembly of other Opel models. The new Corsa, Vivaro and Mokka, which will begin rolling off the assembly lines in Zaragoza later this year, will be among models built with the help of tools from a 3D printer. Their increasing use makes Opel a leader in this field within the GM Group.

References:

ENGINEERING.COM
by http://www.engineering.com/Author/ID/8/TheEngineer | August 21, 2014