3D printing microscopic fish

http://phys.org/news/2015-08-3d-printing-microscopic-fish-team-method.html

These microscopic fish are 3-D-printed to do more than swim

3D-printing microscopic fish: Team demonstrates novel method to build robots with complex shapes, functionalities

Nanoengineers at the University of California, San Diego used an innovative 3D printing technology they developed to manufacture multipurpose fish-shaped microrobots—called microfish—that swim around efficiently in liquids, are chemically powered by hydrogen peroxide and magnetically controlled. These proof-of-concept synthetic microfish will inspire a new generation of “smart” microrobots that have diverse capabilities such as detoxification, sensing and directed drug delivery, researchers said.

The technique used to fabricate the microfish provides numerous improvements over other methods traditionally employed to create microrobots with various locomotion mechanisms, such as microjet engines, microdrillers and microrockets. Most of these microrobots are incapable of performing more sophisticated tasks because they feature simple designs—such as spherical or cylindrical structures—and are made of homogeneous inorganic materials. In this new study, researchers demonstrated a simple way to create more complex microrobots.

The research, led by Professors Shaochen Chen and Joseph Wang of the NanoEngineering Department at the UC San Diego, was published in the Aug. 12 issue of the journal Advanced Materials.

By combining Chen’s 3D printing technology with Wang’s expertise in microrobots, the team was able to custom-build microfish that can do more than simply swim around when placed in a solution containing hydrogen peroxide. Nanoengineers were able to easily add functional nanoparticles into certain parts of the microfish bodies. They installed platinum nanoparticles in the tails, which react with to propel the microfish forward, and magnetic in the heads, which allowed them to be steered with magnets.

“We have developed an entirely new method to engineer nature-inspired microscopic swimmers that have complex geometric structures and are smaller than the width of a human hair. With this method, we can easily integrate different functions inside these tiny robotic swimmers for a broad spectrum of applications,” said the co-first author Wei Zhu, a nanoengineering Ph.D. student in Chen’s research group at the Jacobs School of Engineering at UC San Diego.

These microscopic fish are 3-D-printed to do more than swim

As a proof-of-concept demonstration, the researchers incorporated toxin-neutralizing nanoparticles throughout the bodies of the microfish. Specifically, the researchers mixed in polydiacetylene (PDA) nanoparticles, which capture harmful pore-forming toxins such as the ones found in bee venom. The researchers noted that the powerful swimming of the microfish in solution greatly enhanced their ability to clean up toxins. When the PDA nanoparticles bind with toxin molecules, they become fluorescent and emit red-colored light. The team was able to monitor the detoxification ability of the microfish by the intensity of their red glow.

“The neat thing about this experiment is that it shows how the microfish can doubly serve as detoxification systems and as toxin sensors,” said Zhu.

“Another exciting possibility we could explore is to encapsulate medicines inside the microfish and use them for directed drug delivery,” said Jinxing Li, the other co-first author of the study and a nanoengineering Ph.D. student in Wang’s research group.

These microscopic fish are 3-D-printed to do more than swim

How this new 3D printing technology works

The new microfish fabrication method is based on a rapid, high-resolution 3D printing technology called microscale continuous optical printing (μCOP), which was developed in Chen’s lab. Some of the benefits of the μCOP technology are speed, scalability, precision and flexibility. Within seconds, the researchers can print an array containing hundreds of microfish, each measuring 120 microns long and 30 microns thick. This process also does not require the use of harsh chemicals. Because the μCOP technology is digitized, the researchers could easily experiment with different designs for their microfish, including shark and manta ray shapes.

“With our 3D , we are not limited to just fish shapes. We can rapidly build microrobots inspired by other biological organisms such as birds,” said Zhu.

The key component of the μCOP technology is a digital micromirror array device (DMD) chip, which contains approximately two million micromirrors. Each micromirror is individually controlled to project UV light in the desired pattern (in this case, a fish shape) onto a photosensitive material, which solidifies upon exposure to UV light. The microfish are built using a photosensitive material and are constructed one layer at a time, allowing each set of functional nanoparticles to be “printed” into specific parts of the fish bodies.

“This method has made it easier for us to test different designs for these microrobots and to test different nanoparticles to insert new functional elements into these tiny structures. It’s my personal hope to further this research to eventually develop surgical that operate safer and with more precision,” said Li.

More information: “3D-Printed Artificial Microfish” by Wei Zhu, Jinxing Li, Yew J. Leong, Isaac Rozen, Xin Qu, Renfeng Dong, Zhiguang Wu, Wei Gao, Peter H. Chung, Joseph Wang, and Shaochen Chen, all of the Department of NanoEngineering at the UC San Diego Jacobs School of Engineering. This paper was featured as a cover on the Aug. 12, 2015 issue of the journal Advanced Materials. onlinelibrary.wiley.com/wol1/doi/10.1002/adma.201501372/abstract

 

 

Advertisements

Drugs of the future

http://smallbiztrends.com/2015/08/3d-printing-drugs-spritam-aprecia-pharmaceuticals.html

spritam

Could 3D Printers Manufacture the Drugs of the Future?

You can now use 3D printing to create items using a wide range of filaments, and not just plastics. Metals, edibles, bio and construction materials are just some of the examples that are being developed for 3D printing.

So it shouldn’t come as a surprise when the U.S. Food and Drug Administration (FDA) approved Spritam, an epilepsy medication made using 3D printers.

This makes Spritam the first 3D printed product approved by the FDA for use inside the human body.

The company that developed it, Aprecia Pharmaceuticals, used powder-liquid three-dimensional printing (3DP) technology, which was developed by the Massachusetts Institute of Technology (MIT) in the late 1980s as a rapid-prototyping technique. Rapid prototyping is the same technique used in 3D printing.

According to the company, this specific process was expanded into tissue engineering and pharmaceutical use from 1993 to 2003.

After acquiring exclusive license to MIT’s 3DP process, Aprecia developed the ZipDose Technology platform. The medication delivery process allows high doses of up to 1,000 mg to rapidly disintegrate on contact with liquid. This is achieved by breaking the bonds that were created during the 3DP process.

If you advance the technology a decade or more, having the medication you need printed at home is not that implausible. While big-pharma may have something to say about it, new business opportunities will be created that will be able to monetize the technology.

As impressive as that sounds, there are many more medical applications in the pipeline.

The National Institute of Health (NIH) has a website with an extensive database of 3D printing applications in the medical field. This includes the NIH 3D Print Exchange special collection for prosthetics, which lets you print next generation prosthetics at a fraction of the cost of the ones now being sold in the marketplace.

The next evolution in the field of medicine is printing complex living tissues. Also known as bio-printing, the potential applications in regenerative medicine is incredible.

In conjunction with stem cell research, printing human organs is not as far-fetched as it sounds. Currently different body parts have been printed, and the days of long transplant waiting lists will eventually become a thing of the past.

It’s important to remember that a lot more goes into the creation of a medication or other medical break-through than just being able to “print” drugs. Other costs include intensive research and development and then exhaustive testing.

So there’s no reason to believe 3D printing alone will allow smaller drug firms to more effectively compete with huge pharmaceutical firms. But the break through will certainly create more opportunities in the medical industry for companies of all sizes.

Outside of medicine, 3D printing has been used to print cars, clothes and even guns, which goes to prove the only limitation of this technology is your imagination.

Many of the technologies we use today were developed many years ago, but they take some time before they are ready for the marketplace.

3D printing is one great example. It was invented in 1984, but its full potential is just now being realized.

In 2012, The Economist labeled this technology as, “The Third Industrial Revolution,” and that sentiment has been echoed by many since then. This has generated unrealistic expectations, even though it is evolving at an impressive rate.

smallbiztrends.com

by Michael Guta | Aug 10, 2015

First drug made by a 3D printer

http://qz.com/471030/the-fda-has-approved-the-first-drug-made-by-a-3d-printer/

The FDA has approved the first drug made by a 3D printer

3D printing, a technology still in search of a market, may have just found a home in the world of medicine. The US Food and Drug Administration approved an epilepsy medicine called Spritam that is made by 3D printers, making it the first 3D-printed product that the FDA has approved for use inside the human body.

Aprecia, the pharmaceutical company behind Spritam, says that its new type of tablet is made by 3D-printing layers of the powdered drug, binding the layers of powder together, and then blowing away the excess powder. The drug’s unique structure allows it to dissolve considerably faster than the average pill, which as the news site 3DPrint points out is a boon to seizure sufferers who often are prescribed large, hard-to-swallow pills. Aprecia also says 3D printing will allow doctors to know that the medicine they’re prescribing delivers the exact dose intended, as each pill will be completely uniform.

This could prove to be an important step for integrating 3D printing more deeply into the US health system. Doctors in the US already use a government-sponsored 3D-printing repository to share tool designs to aid in surgeries and treatments; now scientists are working on 3D-printed tracheas and bones, as well as ears, kidneys and skin—which could one day help cover the massive shortage in donor organs.

While the quick-dissolving Spritam tablet is a world away from 3D-printed organs and body parts, its approval shows that the FDA thinks certain 3D-printed materials are safe for human consumption.

Rather like 3D printing itself, this drug could be the base layer the technology slowly builds upon, perhaps generating future medical innovations.

qz.com

by Mike Murphy | August 03, 2015