3D printing microscopic fish

http://phys.org/news/2015-08-3d-printing-microscopic-fish-team-method.html

These microscopic fish are 3-D-printed to do more than swim

3D-printing microscopic fish: Team demonstrates novel method to build robots with complex shapes, functionalities

Nanoengineers at the University of California, San Diego used an innovative 3D printing technology they developed to manufacture multipurpose fish-shaped microrobots—called microfish—that swim around efficiently in liquids, are chemically powered by hydrogen peroxide and magnetically controlled. These proof-of-concept synthetic microfish will inspire a new generation of “smart” microrobots that have diverse capabilities such as detoxification, sensing and directed drug delivery, researchers said.

The technique used to fabricate the microfish provides numerous improvements over other methods traditionally employed to create microrobots with various locomotion mechanisms, such as microjet engines, microdrillers and microrockets. Most of these microrobots are incapable of performing more sophisticated tasks because they feature simple designs—such as spherical or cylindrical structures—and are made of homogeneous inorganic materials. In this new study, researchers demonstrated a simple way to create more complex microrobots.

The research, led by Professors Shaochen Chen and Joseph Wang of the NanoEngineering Department at the UC San Diego, was published in the Aug. 12 issue of the journal Advanced Materials.

By combining Chen’s 3D printing technology with Wang’s expertise in microrobots, the team was able to custom-build microfish that can do more than simply swim around when placed in a solution containing hydrogen peroxide. Nanoengineers were able to easily add functional nanoparticles into certain parts of the microfish bodies. They installed platinum nanoparticles in the tails, which react with to propel the microfish forward, and magnetic in the heads, which allowed them to be steered with magnets.

“We have developed an entirely new method to engineer nature-inspired microscopic swimmers that have complex geometric structures and are smaller than the width of a human hair. With this method, we can easily integrate different functions inside these tiny robotic swimmers for a broad spectrum of applications,” said the co-first author Wei Zhu, a nanoengineering Ph.D. student in Chen’s research group at the Jacobs School of Engineering at UC San Diego.

These microscopic fish are 3-D-printed to do more than swim

As a proof-of-concept demonstration, the researchers incorporated toxin-neutralizing nanoparticles throughout the bodies of the microfish. Specifically, the researchers mixed in polydiacetylene (PDA) nanoparticles, which capture harmful pore-forming toxins such as the ones found in bee venom. The researchers noted that the powerful swimming of the microfish in solution greatly enhanced their ability to clean up toxins. When the PDA nanoparticles bind with toxin molecules, they become fluorescent and emit red-colored light. The team was able to monitor the detoxification ability of the microfish by the intensity of their red glow.

“The neat thing about this experiment is that it shows how the microfish can doubly serve as detoxification systems and as toxin sensors,” said Zhu.

“Another exciting possibility we could explore is to encapsulate medicines inside the microfish and use them for directed drug delivery,” said Jinxing Li, the other co-first author of the study and a nanoengineering Ph.D. student in Wang’s research group.

These microscopic fish are 3-D-printed to do more than swim

How this new 3D printing technology works

The new microfish fabrication method is based on a rapid, high-resolution 3D printing technology called microscale continuous optical printing (μCOP), which was developed in Chen’s lab. Some of the benefits of the μCOP technology are speed, scalability, precision and flexibility. Within seconds, the researchers can print an array containing hundreds of microfish, each measuring 120 microns long and 30 microns thick. This process also does not require the use of harsh chemicals. Because the μCOP technology is digitized, the researchers could easily experiment with different designs for their microfish, including shark and manta ray shapes.

“With our 3D , we are not limited to just fish shapes. We can rapidly build microrobots inspired by other biological organisms such as birds,” said Zhu.

The key component of the μCOP technology is a digital micromirror array device (DMD) chip, which contains approximately two million micromirrors. Each micromirror is individually controlled to project UV light in the desired pattern (in this case, a fish shape) onto a photosensitive material, which solidifies upon exposure to UV light. The microfish are built using a photosensitive material and are constructed one layer at a time, allowing each set of functional nanoparticles to be “printed” into specific parts of the fish bodies.

“This method has made it easier for us to test different designs for these microrobots and to test different nanoparticles to insert new functional elements into these tiny structures. It’s my personal hope to further this research to eventually develop surgical that operate safer and with more precision,” said Li.

More information: “3D-Printed Artificial Microfish” by Wei Zhu, Jinxing Li, Yew J. Leong, Isaac Rozen, Xin Qu, Renfeng Dong, Zhiguang Wu, Wei Gao, Peter H. Chung, Joseph Wang, and Shaochen Chen, all of the Department of NanoEngineering at the UC San Diego Jacobs School of Engineering. This paper was featured as a cover on the Aug. 12, 2015 issue of the journal Advanced Materials. onlinelibrary.wiley.com/wol1/doi/10.1002/adma.201501372/abstract

 

 

3D printing helps China’s economy

http://www.scmp.com/tech/innovation/article/1852059/3d-printing-can-help-modernise-chinas-economy-premier-li-keqiang

A 3D printed building in Shaanxi. Chinese premier Li Keqiang has called for greater investment in the technology. Photo: SCMP Pictures

3D printing can help modernise China’s economy: premier Li Keqiang

The development of 3D printing technologies must be part of a push to modernise China’s economy, the country’s premier, Li Keqiang, said during a speech to the State Council.

Echoing his “Internet Plus” doctrine, Li said a new technological revolution is at hand, and China needs to promote entrepreneurship and innovation in order to maintain competitiveness in a global rush to “reindustrialise”.

His address to the State Council focused on accelerating the development of advanced manufacturing in China, touching on technologies ranging from the internet to industrial robotics and automated machinery.

Since assuming office in 2013, Li has stressed the need for economic reform and a “new normal” growth plan at a sustainable, albeit slower, pace of development. That plan has been rocked by volatility in the stock market in recent months as well as a sharp slowdown in economic growth and flagging demand.

During the address, Li stressed the importance of marrying information technology with traditional manufacturing – a key tenet of his “Internet Plus” strategy – and pointed to 3D printing as “representative of a disruptive technology in the manufacturing industry … which has transformed traditional conceptions and methods of manufacturing.”

Li further highlighted in his address weaknesses underlying the Chinese economy, pointing to weaknesses in innovation, low ‘value-added’ production, poor quality in managerial and sales services, which are further exacerbated by resource and environmental constraints.

The premier’s statements come as Chinese firms working on 3D printing in the construction sector have announced multiple recent successes.

In July, real estate development firm Zhuoda Group assembled a 3D printed 200 square metre home in three hours, having printed the materials over 10 days at a cost of US$400-480 per square metre.

Also this year, construction firm Winsun 3D printed around a dozen 60 square metre houses in one day at a cost of US$5,000 per house. The firm is also currently partnering with the UNited Arab Emirates National Innovation Committee to 3D print an office building in Dubai.

According to Winsun, 3D printing can decrease the material cost of construction by 60 per cent, labour costs by 80 per cent and cut construction time by 70 per cent. The process can also incorporate recycled construction waste into the printing.

scmp.com

by Tim Chen | Monday, 24 August, 2015, 11:53am

 

The world’s smallest phone charger

http://www.3ders.org/articles/20150819-3d-printing-helps-uk-designers-develop-the-nipper-the-worlds-smallest-phone-charger.html

3D printing helps UK designers develop The Nipper, ‘The World’s Smallest Phone Charger’

When considering that nearly everybody carries a smartphone these days – in addition to their keys and wallet – it makes perfect sense why so many designers and manufacturers have been actively designing accessories ranging from speakers and cases to stands and sleeves for the mobile devices.  However, the one problem that everybody runs into is also among one of the most difficult to solve: battery life.

Inspired by the need to create a portable, on-the-go power solution for smartphone users that doesn’t involve carrying bulky cases or powerpacks, designers Doug Stokes and Chris Tait of Design on Impulse in the UK recently created what they are calling “The World’s Smallest Phone Charger” – AKA “The Nipper”.

Consisting of two AA batteries and a magnet that reside on a user’s keyring (the batteries are only installed when in use), the 10 gram Nipper is capable of charging smartphones while users are out and about or perhaps most importantly – during an emergency situation.

“The Nipper was primarily designed for emergency use,” explain the designers.

“When all else fails, when all hope is lost – in situations where you desperately need to use your phone but have no access to laptops, electrical sockets, wind turbines or solar panels the Nipper will be there for you.”

The design of the Nipper contains 3 neodynium magnets that are responsible for both making an electrical connection to the circuit board as well as holding the batteries together.  According to the designers, the circuit is actually a “boost converter” that converts the power from the batteries into a 5v power supply to charge your phone.  For today’s modern smartphones, this means that the batteries can supply an additional 10% battery capacity in 30 minutes, and 20% in just over an hour.

Like so many other hardware developers today, Stokes and Tait turned to 3D printing to make their idea for the World’s Smallest Phone Charger real – and have put the concept on Kickstarter to help it gain some traction; already, the campaign has surpassed their $10K goal by more than $3K and it has three weeks left to go.

“If we’re making small volumes of Nippers, we’ll 3D print the cases out of high quality nylon, but if demand is high and we have to make a full Nipper army we’re going to injection mold the cases out of polypropylene,” says the designers.

“The two halves of the Nipper are connected by either fabric or genuine leather straps. The neodynium are nickel plated on the classic Nippers, and gold plated on the premium Nippers.”

While the concept is certainly impressive, the fact that Tait and Stokes just graduated school together and entered a national design competition to develop The Nipper makes the story all the more impressive.

“One moment we were doing our finals and the next we were in the centre of London, working on a product we’d come up with in our flat which we’d been given support to make into a reality,” said Stokes.

“A lot of people who have just graduated are spending the summer travelling or trying to find a job and move out of home. But being able to go straight from university to working in Somerset House every day, where you’ve got Parliament on one side and St Paul’s on the other, is pretty amazing.”

Considering that the device comes in a number of colors and will likely expand to include multiple strap options, the charger is likely to fit with anybody’s style similar to modern smartphone case designs.

For those interested, a ‘Classic Nipper’ can be purchased starting at just $23 over on Kickstarter.

3ders.org

by Simon | Aug 19, 2015

http://www.3ders.org/articles/20150819-3d-printing-helps-uk-designers-develop-the-nipper-the-worlds-smallest-phone-charger.html

3D printed smartwatch

http://www.3ders.org/articles/20150817-8-year-old-child-develops-3d-printed-smartwatch-kit-for-kids-to-learn-coding-and-3d-printing.html

8-year-old child develops 3D printed smartwatch kit for kids to learn coding and 3D printing

Due to the successes of the ever expanding maker revolution, it’s becoming more and more evident that 3D printers and basic programming need to be integrated into schools to prepare children for their future. Its therefore fantastic to see that children are already picking up making themselves. Just look at the eight-year-old aspiring programmer and maker Omkar Govil-Nair, who has already developed his very own 3D printed O Watch smartwatch and plans to make it available everywhere through a crowdfunding campaign.

Now we sometimes come across inspiring children who are so quickly and easily taking up programming and 3D printing, but few are as successful as Omkar. Like most eight-year-olds, he will be starting fourth grade this year and loves Star Wars, James Bond and badminton. But unlike most, he also loves working with Arduinos and 3D printing. ‘I got interested in electronics and programming 3 years back when I attended my 2nd Maker Faire. I was inspired by Quin Etnyre then the 12 year old CEO of Qtechknow. Since then I wanted to make my own product,’ he explains about his fascination.

But more than doing just a bit of tinkering, he has actually developed this cool-looking O Watch, an Arduino-based programmable smartwatch that is intended to give kids a bit of experience with programming and 3D design. Planning to bring this cool watch to market, it will come with a complete set of components that can be used to build the watch yourself and customize it with 3D printed cases and colorful straps.

As Omkar explained to 3ders.org, he was inspired by all the buzz around smartwatches. ‘I wanted one for myself. I was doing some Arduino project and decided to make my watch using Arduino compatible components. I thought it will be great if other kids can also make their own watches and that is how the idea was created. I always wanted to have my own company after I read about Quin Etnyre of Qtechnow and met him at Maker Faire in 2014, so looking to launch a crowd funding project,’ he explains. ‘I want to make this kit available with easy-to-use web instructions for other kids like me to make their own smartwatches and learn 3D printing and programming.’

As he goes on to explain, the O Watch is essentially an Arduino IDE build intended for basic use through four buttons. ‘You can program it using Arduino IDE. You can program it to function as a watch with date and time functions from Arduino, you can make games and apps and with the sensor board model you can also measure temperature, humidity, pressure as well as make a compass,’ he says. An integrated color OLED screen and a LiPo batter finishes the kit. One example that the boy already made is a rock-paper-scissors app, illustrating that it is a perfect option for learning some basic programming.

What’s more, Omkar did a lot of the work himself and the rest with the help from his dad. ‘I started learning 3D design using Sketchup about 6 months back with help from my dad and Sketchup video tutorials,’ he explains. They then started designs for a case about five months ago, with an eye on the Bay Area Maker Faire. ‘We tried several designs and printed many versions before we got the basic working model we used for the Maker Faire in May. After that we further improved it a bit to make the edges rounded,’ he explains. All 3D printed parts were completed on a Printrbot Simple Metal and in PLA, with a case taking anywhere between twenty and forty-five minutes to 3D print depending on the settings used.

This fun and impressive watch looks perfect for educational purposes, so it’s fantastic to hear that Omkar and his dad are also planning a crowdfunding campaign, which is set to launch later this month. The specific goal will be to raise funds for further improving designs and developing templates that can be easily used by children for customization and 3D printing options. The father and son duo are also aiming to develop two kits: one with the basic O Watch, and the second with an additional sensor board with a wide range of sensors for more build options. In short, plenty to keep an eye on. You can find the O Watch website here.

3ders.org

by Alec | Aug 17, 2015

http://www.3ders.org/articles/20150817-8-year-old-child-develops-3d-printed-smartwatch-kit-for-kids-to-learn-coding-and-3d-printing.html

3D printing in architecture

http://gizmodo.com/this-bizarre-concrete-beam-is-the-smartest-use-of-3d-pr-1723340656

This Bizarre Concrete Beam Is the Smartest Use of 3D Printing In Architecture Yet 

This Bizarre Concrete Beam Is the Smartest Use of 3D Printing In Architecture Yet

I’m going to put this as gently as possible: 3D printing entire buildings, right down to the fixtures, doesn’t make a ton of sense yet.

It’s an exciting vision of the future, of course, but it’s also a myopic one—we’re forcing an emerging technology to fit into the mold of our existing world. While plenty of companies have demonstrated it can be done, that doesn’t mean it should be done. A group of Italian engineers and researchers want to prove that 3D printing individual structural unit makes more financial and environmental sense. The group, called WASProject, originally set out to design a printer that could produce full homes. “WASP was born with the dream of printing houses with 100% natural materials,” the company writes today. “But wisdom teaches that extremism is never a good thing.”

This Bizarre Concrete Beam Is the Smartest Use of 3D Printing In Architecture Yet 

Now, WASProject focuses on printing specific pieces of buildings and bridges—the structural beams—that usually require the most heavy and CO2-producing concrete. “Concrete is bad for the planet,” the group explains. “A ton of cement generates a ton of Co2.”

The group’s designs get rid of any redundant materials in a beam. With smart software modeling, they say they’re able to cut down on the amount of CO2 produced by a structural beam by 50 percent. The product of their research was unveiled today, and they describe it as “the world’s first 3D printed reinforced beam,” though other groups have certainly been pursuing similar ideas.

The fact that it’s lighter and less expensive isn’t the most important thing about the design—it’s the fact that is uses less concrete. Concrete is the most-used artificial material on Earth, aGizmodo’s Maddie Stone wrote yesterday, and it’s now a $100 billion market. In countries that are developing cities very rapidly, it’s the singular building block: One popular stat, for example, holds that China has used more concrete in the past three years than the US did in the entire 20th century. And unfortunately, making the stuff contributes to as much as 7 percent of global CO2 emissions.

While printing full houses also has the potential to cut back on waste, by using construction refuse for “ink,” for example, the technology is still too nascent to be used widely anytime soon, or in any structure besides simplistic one-story homes. WASP’s beam, on the other hand, is already being stress-tested at the University of Naples’ engineering lab. One day, it could be integrated into conventional structures and skyscrapers, without the architects or developers needing to design a fully printed building.

It’s still a long ways from being adopted by the industry—this is still just an experiment. But it’s far less of a pipe dream than a full 3D-printed house. You might be waiting on that for a while.

gizmodo.com

by Kelsey Campbell-Dollaghan | 8/11/15 11:00am

First 3D printed pill

http://www.theguardian.com/artanddesign/architecture-design-blog/2015/aug/05/the-first-3d-printed-pill-opens-up-a-world-of-downloadable-medicine

Pink Pills

The first 3D-printed pill opens up a world of downloadable medicine

Now that the US has approved a 3D-printed drug, pharmaceuticals companies in the UK are hoping their patents will be next – from the pyramid-shaped pill-makers to the man who has done for drugs what Apple did for music.

With architects printing lumpy plastic houses, fashion designers printing oddly-shaped dresses and food companies printing dodgy-looking hamburgers, the hype around 3D printing can often seem like a novelty. But news that the world’s first 3D-printed drug has just been approved suggests that, beyond the realm of personalised plastic trinkets, the technology still has a huge amount to offer.

Developed by Ohio-based pharmaceutical company Aprecia, Spritam levetiracetam is a new drug to control seizures brought on by epilepsy. Approved by the US Food and Drug Administration this week, it employs the company’s trademark “ZipDose” technology, which uses 3D printing to create a more porous pill. Its structure means the pill dissolves more quickly on contact with liquid, making it much easier to swallow high doses than a conventional tablet.

The 3D printing process also allows layers of medication to be packaged more tightly in precise dosages, and it points to a future of more personalised medicine. 3D-printed pills could be custom-ordered, based on specific patient needs, rather than on a one-drug-fits-all approach.

“For the last 50 years, we have manufactured tablets in factories and shipped them to hospitals,” said Dr Mohamed Albed Alhnan, a lecturer in pharmaceutics at the University of Central Lancashire. “For the first time, this process means we can produce tablets much closer to the patient.” By making slight adjustments to the software before printing, hospitals could adjust doses for individual patients, a process of personalisation that is otherwise prohibitively expensive.

The porous pill technology could also have important benefits for other drugs, according to Marvin Rorick, a neurologist at Riverhills Neuroscience in Cincinnati. “In my experience, patients and caregivers often have difficulty following a treatment regimen,” he said. “Whether they are dealing with a swallowing disorder or the daily struggle of getting a child to take his or her medication, adherence can be a challenge. Especially for children and seniors, having an option for patients to take their medication as prescribed is important to managing this disease.”

While 3D printing has already been embraced in other medical fields – from printing new jawbones in facial reconstruction to custom-shaped teeth and other dental implants, as well as producing personalised prosthetics – this is the first time the technology has been approved for the production of drugs; and it won’t be the last time.

Researchers at the School of Pharmacy of University College London have been developing a technique to 3D-print pills in different shapes, from pyramids to doughnuts, using a technique known as “hot melt extrusion”. The different forms, which would be hard to manufacture using standard production techniques, release drugs at different rates. Their research has found that the rate of drug release is dependent not on surface area, but on the surface area-to-volume ratio. A pyramid-shaped pill, for example, releases a drug slower than a cube or a sphere, allowing absorption to be controlled.

While the Spritam pill similarly uses 3D printing primarily to change the physical structure of the pill, other researchers have been working on how the technology could be used to develop new drugs at a molecular level. Professor Lee Cronin at Glasgow University has been working on a “chemputer”, a sort of 3D-printing chemistry set, which can be programmed to make chemical reactions and produce different molecules. Describing the process as similar to what Apple did for music, he envisages a world where patients will be able to download the “recipes” for drugs and print them at home. In the future, he suggests, we won’t be buying drugs, so much as blueprints or apps.

theguardian.com

by  | Wednesday 5 August 2015

A group of Harvard scientists have built a 3D printer!

http://qz.com/462322/a-group-of-harvard-scientists-have-built-a-3d-printer-thats-actually-useful/

A group of Harvard scientists have built a 3D printer that’s actually useful

Despite all the fanfare, 3D printing has yet to hit its stride. Up until now, its best uses have been in designing, prototyping, and making creepy copies of yourself. This tends to stem from the fact that you can generally only print with one material at a time, and in most cases, it’s faster to use traditional manufacturing methods than 3D printing. But Voxel8 wants to change that: Its printer can print circuits right into other objects.

“3D printing fails when it’s asked to do the same thing that a traditional manufacturing process already does,” co-founder Dan Oliver told Quartz. He said the company was born out of Harvard’s material science lab and the research of Professor Jennifer Lewis. Oliver said the name Voxel8 is a combination of “voxel”—which is a pixel with volume—and a play on the word “pixelate,” meaning to digitize an image. And that’s basically what its printer will let you do: make physical objects with digital elements.

Voxel8’s first printer comes with two printing heads—one prints standard 3D printer plastic, and the other spits out its proprietary material that’s electrically conductive. Oliver said it has the consistency of peanut butter and allows you to print circuits right into an object. The company used its printer to build a working quadcopter drone in one sitting. Oliver said that it’s possible to print a computer’s motherboard with the Voxel8: “We’re there, we can do that.”

Oliver said the company is already working on ways to incorporate other materials—like epoxies, silicone, and ceramics—into its 3D printer. The printing heads on its first printer are interchangeable, so in the near future, you’ll be able to print yourself some batteries, a web-connected cereal bowl, or even a pair of shoes loaded with sensors, if you felt so inclined.

“People will use this to make things we haven’t even thought of,” Oliver said. But Voxel8’s process is still quite slow: It took an hour and a half for the company to print its drone, so it’s not going to replace traditional manufacturing processes any time soon. However, Oliver envisions useful applications in the short term in medical and wearable technology, where more custom-fit, ergonomic devices would be more useful than one-size-fits all devices on the market.

On July 24, Voxel8 announced it had secured $12 million in funding to help bring its printer to market and develop its technology. The company showed off its printer at this year’s CES show, and it’s available now for pre-order for $9,000. Oliver said it will ship before the end of the year, and the funding will help guarantee that. Oliver views the company’s first printer as a developer’s model—similar to Facebook’s Oculus Rift shipping a version of its VR headset for researchers before fine-tuning its first consumer model. The company plans to use part of the funding to develop a higher performance version for a wider audience.

qz.com

by Mike Murphy | July 24, 2015

Things to make with 3D printer waste

http://www.bbc.com/news/business-33350275

Things to make with 3D printer waste

Designers Seongil Choi and Fabio Hendry have developed a process to make craft designs from the waste product of 3D printing.

They use the leftover nylon powder from the most popular kind of 3D printing, selective laser sintering printing, to make their creations.

As part of its Future Design series, BBC News spoke to them, to find out what can be made with this technique.

References:

bbc.com

http://www.bbc.com/news/business-33275414

19 year old creator of cheap robotic arm controlled by brainwaves

https://www.yahoo.com/tech/19-year-old-uses-3d-printing-to-create-cheap-120454888024.html

19-Year-Old Uses 3D Printing to Create Cheap Robotic Arm Controlled by Brainwaves

For Easton LaChappelle, a 19-year-old from Colorado in the United States (U.S.), the difficulty with robotics has never been the technology itself – something he says he managed to master in a matter of months from his bedroom in his parent’s house – but the cost.

The technology used by most robotic arms and hands on the market – and many more of those in development – typically comes with large overheads.

In the last five years, though, learning almost exclusively online in forums and emails, LaChappelle has managed to synthesize a series of robotic hands that could change industries and lives – and most of which cost just a few hundred dollars.

While other developments in countries like Austria and Argentina have pushed the boundaries of prosthetic offerings, helping those missing limbs to start to regain use of them with robotics, LaChappelle has done so using 3D printing.

And he’s made one that he says can read your mind. It’s called Anthromod.

“This reads right about 10 channels of the brain, so it kind of works kind of like a muscle sensor in that it picks up small electric discharges and turns that into something you can actually read within software, and then we actually track patterns and try and convert that into movement. So with this I’m actually able to change grips, grip patterns, based on facial gestures, and then use the raw actual brainwaves and focus to actually close the hand or open the clamp or hand,” he told Reuters Television.

One of the most important aspects of the Anthromod design is the way in which it’s controlled by the software, which LaChappelle says is different from the types of control that exist in other robotic platforms.

While it’s the hand itself that moves, as more advanced controls are created it’s the software that’s doing the heavy lifting, using algorithms that make the arm easier to use.

“A good example is we actually had an amputee use the wireless brainwave headset to control a hand, and he was able to fluently control the robotic hand in right around about 10 minutes, so the learning curve is hardly a learning curve any more,” he said.

The arms themselves might not look polished and ready for the shop floor – but LaChappelle sees them as cutting edge.

His robotic arms are all prototypes, each fulfilling a different need according to their design, with some using a wireless brainwave headset, designed more for prosthetic use. Another of his tele-robotic controlled hands was created with dangerous environments in mind, where human-like robots could be sent to allow people to monitor situations and intervene from afar.

“I really tried to make this as human-like as possible – this is probably about my fifth generation of the full robotic arm, and this is controlled using a full tele-robotic system, so there’s actually a glove that you wear that tracks your hand movements, accelerometers to track your wrist and elbow, and then an IMU sensor as well to track your bicep rotation as well as your shoulder movement, and that gets all translated wirelessly to the robotic arm where it will copy what you do,” he said.

One of the most impressive aspects of the arm is not the hardware itself, or even the software that controls it – but the fact that it can be 3D printed for a fraction of the cost of modern prosthetics.

This allows him to make complex internal structures to the designs which would otherwise be impossible, using not just any 3D printer, but precisely the kind many expect people to have at home in the near future.

“So 3D printing allows you to create something that’s human-like, something that’s extremely customized, again for a very low cost, which for certain applications such as prosthetics, is a really big part of it,” he told Reuters.

“The full robotic arm is actually open source, and so people are now actually able to take this, reproduce it, and adapt it for different situations, applications, and really see what you can do with it,” he added.

The Anthromod itself cost only about 600 dollars to make, LaChappelle said.

His work is documented in the videos he made at home, showing his handiwork – all part of his effort at making the invention open source – which means anyone can take his technology and customize and build on it.

The idea, he said, is not to create something that can solve problems for those with prostheses and other needs for robotic arms like the ones he’s invented – but rather to create a platform that people around the world can use to customize their own versions of to suit their needs.

“A big reason we designed this on the consumer level is because we made this open source, we want someone that has a 3D printer, or very little printing experience, to be able to replicate this, to be able to use this for new applications, to be able to adapt it into new situations, so it’s really exciting to see what people will start doing with something like this,” he said.

“For the actual arm, we designed everything to be modular, meaning all the joints can actually interchange, and there’s a universal bolt pattern. So you can now create something human-like, or you can create a big 20 degree freedom arm for complex filming or even low cost automations. So we really want to make a robotics platform, not so much just a robotics hand from this,” he added.

LaChappelle hopes his efforts will contribute to developments in bomb defusal robots, heavy equipment and heavy industrial automation robotic arms, as well as exoskeletons.

yahoo.com

3D printed titanium bike!

http://www.cnet.com/news/how-a-3d-printed-titanium-bike-points-the-way-to-products-custom-fit-for-you/

How a 3D printed titanium bike points the way to products custom-fit for you

Design firm Industry has developed a bike that demonstrates how the lines are blurring in design, engineering and manufacturing. This shift will ultimately allow companies to tailor products to individuals.

PARIS – The Solid is an unusual bicycle: it’s 3D-printed out of titanium, it’s unusually streamlined, it will take you on routes designed to help you discover a city and it tells you where to turn by buzzing signals in the handlebars. It’s also a harbinger of how products will be built in the future.

But the Solid, designed by a Portland, Ore.-based firm called Industry and unveiled Thursday here for the Connected Conference, is unusual in another way, too. It’s not a product to be sold, but instead a project to help Industry figure out the future of design and manufacturing.

Figuring out that future is tough. In the old days, designers would come up with a product’s look on paper or clay, then hand it off to engineers who’d try to make it work in the real world. Nowadays, designers and engineers work simultaneously, scanning sketches, printing prototypes in plastic and iterating from one possibility to the next as fast as possible. And 3D printers, which fuse raw materials layer by layer into metal or plastic components, will open the door to new levels of customization.

The end result may not mean you can buy the Solid in a bike shop next year. But according to Industry co-founder Oved Valadez, it will completely transform the products you do buy.

“The future is about bringing ‘personal’ back to service,” Valadez said. Instead of buying something in size small, medium or large, you’ll buy it in “size me,” he said.

That approach will apply to footwear, bicycles, cars and more, he predicted. “You’ll scan yourself with your handheld [phone], and it’ll give you a recommendation about what is your perfect size.”

Valadez’s profession changed dramatically decades ago with the gradual spread of computer-aided design (CAD) and manufacturing (CAM), but the arrival of 3D printers means the technological transformation isn’t over. Another big shift is the spread of computing hardware and software beyond personal computers and smartphones and into cars, toys, thermostats, streetlights, traffic signals and myriad other devices – a trend broadly called the Internet of Things.

Competitive pressure

The computing industry’s appetite for competitive, fast-paced change also has helped bring the once-separate disciplines of design, engineering and manufacturing closer together, said Marc Chareyron, co-founder of French design firm Enero.

“If you have a designer who hands the work to an engineer who hands it to the software engineer, then the iterations are so long, it takes years to build something,” Chareyron said. That’ll doom a project: during that wait, products will be overtaken by competitors’ models or by new technology trends.

For Valadez and Industry, the Solid bike project was a way to bring new hardware, software, and collaborative approaches into the business. They’d photograph life-size sketches and import them into Autodesk‘s Fusion 360 and Alias software. They’d make old-style cardboard and use new-era 3D printers to create components for the bike. And when it was time for manufacturing, they combined 3D printing with traditional hand-finishing and hand-welding techniques drawing on the expertise of titanium bike frame maker Ti Cycles.

“It’s the new way. It’s more iterated and collaborative. It allows you to quickly bring form and function to the same level,” Valadez said. “Unlike 10 years ago, utility and beauty are now one.”

They built a bike with software, too. A smartphone app lets people select routes through a city that spotlights interesting attractions, shopping areas, restaurants. And inside the bike itself is an Arduino-based electronics board that handles the bike’s GPS position tracking and signals to the rider when it’s time to turn right or left by buzzing the appropriate handlebar grip.

Among Industry’s clients are Nike, Intel, Starbucks and InCase, a maker of bags and cases for carrying delicate electronic products.

3D printing still immature

3D printing is good for making prototypes, but the technology can’t handle everything yet when it comes to manufacturing, he said. There are size limits to fusing parts out of titanium powder, for example, and 3D-printed parts still require a lot of finishing.

But 3D printing opens up new options. For one thing, it permits much more complicated shapes that can do multiple jobs. Some of the Solid’s components have interior walls that both increase strength in high-stress areas and serve to route brake and gear-shifting cables internally for a sleek look, for example.

Building complex parts that serve dual or triple functions is important, especially in areas like the automotive industry where durability is important. A part that serves multiple jobs means designers can avoid bolting together components that over time can rattle loose and break.

For Industry, the 3D printing was a learning experience — for example in understanding how much the titanium needed to be finished with grinders and bead-blasting and how much that would change the dimensions of the product.

Despite the rough patches, though, Valadez is a convert. As with early technologies like molding and computer-controlled machine tools, 3D printing is maturing. “There are limitations,” Valadez said, “but it is the future.”

cnet.com

by | May 28, 20155:30 AM PDT