Eco-friendly 3D printed supercar!

http://www.reuters.com/article/2015/08/12/us-usa-3d-printed-supercar-idUSKCN0Q91W020150812

Eco-friendly 3D printed supercar

A California automotive start-up is hoping their prototype supercar will redefine car manufacturing. The sleek race car dubbed ‘Blade’ didn’t come off an assembly line – but out of a 3D printer.

Kevin Czinger of Divergent Microfactories has spent most of his career in the automotive industry. One day he realized that no matter how fuel-efficient or how few tailpipe emissions the modern car has, the business of car manufacturing is destroying the environment.

“3D printing of metal radically changes that. By looking at 3D printing not for that overall structure but to create individual modular structures that can be combined, that 3D printing transforms everything,” said Czinger during an interview with Reuters in Silicon Valley.

According to Czinger, 3D printing transforms everything by changing the way the structural components of cars are fabricated. Currently cars are pieced together on long assembly lines inside large factories that use massive amounts of energy. Even the most fuel-efficient car has a large carbon footprint before ever leaving the plant.

Czinger and his team’s approach was to take the large plant out of the equation. To accomplish this they printed the modular pieces that are used to connect carbon rods that make up the Blade’s chassis.

“The 3D printed chassis is only 102 pounds and has the same strength and safety protection as a frame made out of steel,” said Brad Balzer, the lead designer on the project.

By using carbon fiber instead of steel or aluminum for the body, the entire vehicle only weighs 1400 pounds (635kg), giving it twice the weight to horsepower ratio of a Bugatti Veyron.

The Blade is fitted with a 700 horse power engine that runs on natural gas, reducing its carbon footprint even further.

Balzer says designing an eco-friendly speed demon supercar as their first prototype was intentional.

“We focused a lot on the aesthetics of this car because it is very important to capture the people’s imaginations, especially when we are talking about the core enabling technologies,” he said.

The core enabling technology, the ability to print out car components that can be easily assembled, is what Kevin Czinger hopes will revolutionize car manufacturing. He says electric cars are a step in the right direction, but alone they won’t be enough to curb greenhouse emissions given the projected rise in demand for cars globally unless the way they are manufactured changes.

“By constructing a car this way it has less than one third of the environmental and health impact than the 85 hours all electric car for example has,” he added.

Czinger and Balzer are starting small but they believe their new 3D printing method for car manufacturing will have a huge impact on how the cars of the future are built.

reuters.com

by BEN GRUBER | Wed Aug 12, 2015 3:14pm EDT

3D printed functioning motorcycle

http://www.gizmag.com/te-3d-printed-motorcycle/37729/

The 3D-printed motorcycle, on display

TE Connectivity 3D prints a functioning motorcycle

Unveiled at Rapid 2015 in Long Beach, California, TE Connectivity’s exercise in 3D printing demonstrates the ability to design a motorcycle on a computer, print it in plastic, add tires and a motor, then take it for a spin. While the result may not quite be ready to hit the highway, the concept is still nothing short of exciting.

The steering head is the most heavily stressed part of the frame in any motorcycle, yet this plastic one can handle two-up riding Printing a wheel rim strong enough to hold an inflated tire is not an easy task This V2 is just a plastic mock-up, the real motor is hidden in the fake "oil tank" behind it All the electrical components work properly on TE's prototype motorcycle

Considering that fundamental parts such as the frame and wheel bearings are entirely printed in plastic, one would agree that TE’s goal to show that the technology can be used to manufacture load-bearing production parts has been achieved.

Modeled in a Harley-Davidson Softail fashion, the motorcycle measures around 8 ft (2.4 m) long, weighs 250 lb (113.4 kg) and consists of more components than its designers can account for. Its frame, printed after a process of trial and error, can support a total of 400 lb (181 kg) – that would be two adult passengers. Apart from the small electric motor and tires, some other outsourced parts include the braking system, electrical wiring, battery, belt drive, mirrors, sidestand and some bolts.

The highlight is, of course, its fully functioning status. A small 1 hp (750W) electric motor can power a 15 mph (24 km/h) ride for several minutes. Though this may not sound ground-breaking, it doesn’t necessarily need a bigger battery or a stronger engine to make a point as a showbike at a conference on printing, scanning and additive manufacturing. All that matters is that, after some 1,000 work hours and US$25,000, TE Connectivity has come up with a proper motorcycle indeed.

The main load-bearing parts were constructed with Fused Deposition Modeling (FDM) technology, the process of injecting layer upon layer of ABS (acrylonitrile butadiene styrene) plastic enriched with the heat resistant resin Ultem 9085. With this process, TE printed several parts with complex dynamic properties, such as the frame.

The wheel bearings sound tricky to fabricate, especially the rear one that was printed into a single piece with the hub and the drive sprocket. After some testing miles, both bearings reportedly held up against the load they must bear and the heat generated in the process. Equally difficult work has probably been involved in the fabrication of the wheel rims, which have to support real motorcycle tires with fully-inflated tubes.

Some metal parts like the headlight housing were printed in bronze through Direct Metal Laser Sintering (DMLS), where a laser melts the desired shape out of several layers of metal powder.

Apparently this is the second prototype or, more precisely, a rebuild of the first after it suffered some damage during transportation. Thankfully creative minds saw this as an opportunity rather than a calamity, finding the chance to make some improvements on the original design.

Although it seems highly improbable for an electronic connector and sensor manufacturer to build any more motorcycles, TE Connectivity’s achievement highlights some promising prospects. Already several DMLS applications are available to the automotive and aerospace industries though companies like EOS. Stratasys, whose printers worked overtime for this project in TE’s labs, is currently in a partnership with Ducati advising the Italians on developing in-house FDM prototyping. By printing functional prototype engines, Ducati has been able to cut the development time of a new Desmosedici race engine for MotoGP from 28 to only eight months. Benefits from this process are expected to reach production models sooner or later.

TE Connectivity initially thought of printing a model of a motorcycle as a display of sculpting skills. This had already been done, several times over. The idea of a functioning bike was born in the process, probably out of the realization that it could actually be done. After all, the first printed car was unveiled and driven in public just last September.

3D printing technology is advancing by leaps and bounds, having progressed in just a few years from forming simple ornamental plastic parts to generating dynamic structures that function within moving mechanisms. In this sense, this motorcycle that looks like a child’s toy may well prove to be a landmark product.

gizmag.com

by  | May 29, 2015

3D printing with Easy Cheese !

http://www.cnet.com/news/3d-printing-with-easy-cheese-isnt-so-easy/

Turns out 3D printing with Easy Cheese isn’t so easy

Delve into the complicated and messy world of spray-cheese 3D printing as a maker attempts to produce gooey cheese forts and cracker toppings. No, it’s not an April Fools’ joke.

Innovations in 3D printing are coming fast and furious these days. There seems to be particular interest in food-related printers capable of making anything from pizza to pancakes. But the world has really been crying out for a spray-cheese printer, and now we have one in the form of the Easy Cheese 3D Printer.

The printer uses a special mechanism to trigger the cheese can while the print head moves around to position the cheese in the correct location. At least that’s the idea. It doesn’t always go as planned. Sometimes the trigger puller slips off, resulting in no cheese being dispensed. Sometimes the cheese bubbles up around the print head, creating a gooey mess.

There are a couple of minor moments of triumph. The printer does a decent job of squeezing a mound of cheese out onto a cracker, though it fails to cleanly disconnect the cheese stream. It also creates a passable spray-cheese fort in the form of a square with layers of cheese. Let’s face it, this innovation isn’t likely to attract NASA’s attention.

The experiment comes from the creative mind of Andrew Maxwell-Parish, manager of the Hybrid Lab at the California College of the Arts. Previously, he designed an interactive tip jar called the Wu-Tang Can and a High Five Camera for capturing high fives with strangers. Suddenly, the Easy Cheese 3D printer concept doesn’t seem so out there anymore.

cnet.com

by | April 1, 2015 11:18 AM PDT