3D printed smartwatch

http://www.3ders.org/articles/20150817-8-year-old-child-develops-3d-printed-smartwatch-kit-for-kids-to-learn-coding-and-3d-printing.html

8-year-old child develops 3D printed smartwatch kit for kids to learn coding and 3D printing

Due to the successes of the ever expanding maker revolution, it’s becoming more and more evident that 3D printers and basic programming need to be integrated into schools to prepare children for their future. Its therefore fantastic to see that children are already picking up making themselves. Just look at the eight-year-old aspiring programmer and maker Omkar Govil-Nair, who has already developed his very own 3D printed O Watch smartwatch and plans to make it available everywhere through a crowdfunding campaign.

Now we sometimes come across inspiring children who are so quickly and easily taking up programming and 3D printing, but few are as successful as Omkar. Like most eight-year-olds, he will be starting fourth grade this year and loves Star Wars, James Bond and badminton. But unlike most, he also loves working with Arduinos and 3D printing. ‘I got interested in electronics and programming 3 years back when I attended my 2nd Maker Faire. I was inspired by Quin Etnyre then the 12 year old CEO of Qtechknow. Since then I wanted to make my own product,’ he explains about his fascination.

But more than doing just a bit of tinkering, he has actually developed this cool-looking O Watch, an Arduino-based programmable smartwatch that is intended to give kids a bit of experience with programming and 3D design. Planning to bring this cool watch to market, it will come with a complete set of components that can be used to build the watch yourself and customize it with 3D printed cases and colorful straps.

As Omkar explained to 3ders.org, he was inspired by all the buzz around smartwatches. ‘I wanted one for myself. I was doing some Arduino project and decided to make my watch using Arduino compatible components. I thought it will be great if other kids can also make their own watches and that is how the idea was created. I always wanted to have my own company after I read about Quin Etnyre of Qtechnow and met him at Maker Faire in 2014, so looking to launch a crowd funding project,’ he explains. ‘I want to make this kit available with easy-to-use web instructions for other kids like me to make their own smartwatches and learn 3D printing and programming.’

As he goes on to explain, the O Watch is essentially an Arduino IDE build intended for basic use through four buttons. ‘You can program it using Arduino IDE. You can program it to function as a watch with date and time functions from Arduino, you can make games and apps and with the sensor board model you can also measure temperature, humidity, pressure as well as make a compass,’ he says. An integrated color OLED screen and a LiPo batter finishes the kit. One example that the boy already made is a rock-paper-scissors app, illustrating that it is a perfect option for learning some basic programming.

What’s more, Omkar did a lot of the work himself and the rest with the help from his dad. ‘I started learning 3D design using Sketchup about 6 months back with help from my dad and Sketchup video tutorials,’ he explains. They then started designs for a case about five months ago, with an eye on the Bay Area Maker Faire. ‘We tried several designs and printed many versions before we got the basic working model we used for the Maker Faire in May. After that we further improved it a bit to make the edges rounded,’ he explains. All 3D printed parts were completed on a Printrbot Simple Metal and in PLA, with a case taking anywhere between twenty and forty-five minutes to 3D print depending on the settings used.

This fun and impressive watch looks perfect for educational purposes, so it’s fantastic to hear that Omkar and his dad are also planning a crowdfunding campaign, which is set to launch later this month. The specific goal will be to raise funds for further improving designs and developing templates that can be easily used by children for customization and 3D printing options. The father and son duo are also aiming to develop two kits: one with the basic O Watch, and the second with an additional sensor board with a wide range of sensors for more build options. In short, plenty to keep an eye on. You can find the O Watch website here.

3ders.org

by Alec | Aug 17, 2015

http://www.3ders.org/articles/20150817-8-year-old-child-develops-3d-printed-smartwatch-kit-for-kids-to-learn-coding-and-3d-printing.html

Candy mechanics uses 3D printing

http://www.3ders.org/articles/20150720-candy-mechanics-uses-3d-printing-to-turn-selfies-into-edible-candy.html

Candy Mechanics uses 3D printing to turn selfies into edible candy

The 3D printing of food is one of the most exciting and amusing developments within the world of additive manufacturing, but hasn’t been able to recreate very detailed designs. Now a new British startup has put an unusual spin the production process to achieve a much higher quality. Called Candy Mechanics, they use 3D scanners and 3D printed molds to turn selfies into edible lollypops made in an impressive six different flavors. If anything, it really proves how much fun you can have with desktop technology and a creative mind.

The project in question is called Heads on Sticks, that has just completed a very successful six week trial at Selfridges London. Startup Candy Mechanics was founded by Sam Part and Ben Redford out of a love for fun and ridiculously awesome stuff. These two modern-day Willy Wonkas were fortunate enough to get on board with Makerversity, a pioneering making community established in 2013. They specialize in bringing innovative designers together with workshops, materials, tools and the environment necessary to develop a startup. Makerversity set the two makers up with a workshop in the iconic Selfridges London for six weeks, where they pioneered these fascinating edible lollypops with the help of customers from the streets and Selfridges’ staff members.

The final products are then made through a remarkably simple process. First, scans of customers are made, which are used to make 3D printed mini busts. These are then used to make molds, which can be filled with chocolate or any flavor you prefer. ‘In all seriousness though, there’s some incredible tech out there at the moment and we feel like it’s a great time to apply some of that tech to the world of candy. We’re not just about lollipops, we want to push the boundaries of how people think and interact with candy in all its forms,’ they say in an interview with Makerversity.

This process was developed during their trial at Selfridges. ‘We had six weeks to develop a product from scratch all the way through to retail,’ they wrote on their blog. ‘It was like christmas morning breaking open brand spanking new machines and all the tools we needed to get started.’ Their goal? To develop a kit that can be used to make your own chocolate heads. ‘In the kit we put a 3D print of you, chocolate, sticks, instructions & a custom made mould of your very own head,’ they add. This six weeks trial turned out to be an amazing prototyping period at one of the busiest shopping areas in Britain, enabling them to develop a fantastic product and get a lot of feedback.

This process has now prepared them for a production run of their six favorite flavors, all made with their custom production process. ‘Using 3D scanners, 3D Printers and 3D humans beings (you), we have developed a process that makes your face scrumptious, no matter what you look like,’ they write. The available flavors are: chocolate, raspberry and pistachio, banana and salted peanut, raspberry and black sesame seeds, salted corn and chocolate crumb, peanut and chocolate crumb.

And why lollipops? ‘Two reasons. A: We think everyone has always wanted to lick their own (or someone else’s) face. B: We also think that at some point, everyone has wanted someone else’s head on a stick. We’re just providing the means to do it – call us a public service,’ the duo explains.

But in all seriousness, cofounder Ben Redford explained what an impact 3D printers can make on original and small scale manufacturing. ‘3D printers have massively reduced the time to get from an idea to something that resembles a good working prototype. They’ve changed the making process because you can now make rapid iterations and developments on a product very quickly, hack other products with printed parts and even produce small batches of products from the comfort of your desk, kitchen or space rocket,’ he says. And when combined with a fantastic making environment like that provided by Makerversity, beautiful (and tasty) things can happen.

3ders.org

by Alec | July 20, 2015

http://www.3ders.org/articles/20150720-candy-mechanics-uses-3d-printing-to-turn-selfies-into-edible-candy.html

Disney develops 3D printed 2-legged robot!

http://www.3ders.org/articles/20150527-disney-develops-2-legged-3d-printed-robot-that-walks-like-an-animated-character.html

Disney develops 3D printed 2-legged robot that walks like an animated character

There are just a few companies in the world that need no introduction, and Disney is one of them. After all, who didn’t grow up watching Disney classics? But did you know that Disney does more than shoot box office hits, record terrible catchy songs and avoid theme park-related lawsuits? They also have an active Research Department charged with creating actual, rather than digital, creations which can be used for throughout the Disney imperium. And the department’s latest achievement is impressive: recreating the walking movements of animated characters in bi-pedal robots, which they have done using 3D printing technology.

As three scientists attached to the department in Pittsburgh – Seungmoon Song, Joohyung Kim and Katsu Yamane – explain, they set out to develop robotics that can be used to make Disney’s theme parks and toys more realistic and magical. After all, fit young heros from Disney’s movies and TV shows don’t exactly perform well when moving as stiffly as paraplegic grandmothers. ‘Creating robots that embody animation characters in the real world is highly demanded in the entertainment industry because such robots would allow people to physically interact with characters that they have only seen in films or TV. To give a feeling of life to those robots, it is important to mimic not only the appearance but also the motion styles of the characters,’ they write.

But this isn’t easy. As they write in an article entitled ‘Development of a Bipedal Robot that Walks Like an Animation Character’, the field of robotics struggles to capture life-like movement. ‘The main challenge of this project comes from the fact that the original animation character and its motions are not designed considering physical constraints,’ they write. And of course trying to tackle quirky and fast animated characters is even more difficult, as they movements are not typically designed to be physical correct. ‘[But in recent years] animation characters have evolved to be more realistic. Using computer graphic techniques, we can design 3D characters, and generate more natural and physically plausible motions with them.’

And you might be surprised to learn that their solution is somewhat similar to what you and I would do for a project: just 3D print it and add some servo motors. Of course it isn’t quite so simple, but to capture the exaggerated gait and movement of animated characters they first 3D printed leg components to match the structure of their potato-like character, which you can see in the clip below. ‘We start from animation data of a character walking. We develop a bipedal robot which corresponds to lower part of the character following its kinematic structure. The links are 3D printed and the joints are actuated by servo motors,’ they explain. All these parts were 3D printed using Stratasys’ Object 260 Connect 3D printer in RGD525 material.

Of course these need to be very specifically angled and positioned to ensure that 3D movement can be recreated. And Trajectory optimization software does most of the rest. ‘Using trajectory optimization, we generate an open-loop walking trajectory that mimics the character’s walking motion by modifying the motion such that the Zero Moment Point stays in the contact convex hull,’ they write. Now this process is more difficult than it sounds, but for a full description of data extraction and installing the mechanics you’ll have to dive into the full scientific article here.

But the results are obvious, though not perfect. The robot can definitely walk well, but doesn’t reproduce the digital models perfectly and has a tendency to wobble. ‘When we play back the optimized trajectory, the robot wobbles forward. It is because the robot does not produce the motion perfectly. For example, the stance leg flexes more and scuffs the swing foot at the beginning and end of the swing phase. This causes the swing foot to push against the ground and the stance foot to slip, which results in unstable walking,’ the scientists write.

One solution for this is slowing down the process. ‘We observed that the robot slips less as we play back the optimized motion slower, and the resulting walking looks closer to the optimized walking,’ they write, but conclude that the system just isn’t working optimal for now. While there are few options for more progress – including investigating structural materials and replacing 3D printed parts – it looks like we’ll have to wait a few years before running into mechanically-sound walking Disney characters at Disney world.

3ders.org

by Alec | May 27, 2015

http://www.3ders.org/articles/20150527-disney-develops-2-legged-3d-printed-robot-that-walks-like-an-animated-character.html

3D printing use to help teach blind girl

http://www.3ders.org/articles/20150417-father-uses-3d-printing-to-help-teach-his-blind-daughter-math.html

Father uses 3D printing to help teach his blind daughter math

While 3D printing technology has been steadily cementing its reputation as an excellent tool for help the disabled and people suffering from unusual medical conditions, one family from San Diego proves that we shouldn’t forget about the blind either. For one of Jason and Dori Walker’s daughters, Layla, is blind but is using 3D printed objects to ensure she doesn’t fall behind in school.

As father Jason explained in a brief documentary, he and his wife are raising a loving family with five children, of which three have been adopted. ‘When we started having kids and got married, we had two kids and lost a third one. We decided at that point to just adopt. My wife found these kids on a video on the Huffington Post. They were a set of three children, thirteen, ten and seven. They were looking for a forever home,’ he says.

This story already has everything to warm your heart, but unfortunately the eldest of the three, Layla, was born blind. The girl, who is currently in the eighth grade, was facing tremendous difficulties due to her blindness. Education, after all, is completely geared towards sight and while plenty of braille alternatives have fortunately been made already, lots of basic concepts in math, for instance, are very difficult to grasp when blind.

Father Jason, fortunately, happened to already have a ROBO 3D printer at home, which he quickly turned into an educational machine that turns intangible concepts such as fractures into tangible objects. ‘Layla’s predominant sense that she uses to see and learn the world is touch,’ mother Dori explains, so the parents set out to 3D print objects for their daughter. As Layla liked busses at the time, Jason first 3D printed a bus on his ROBO 3D printer to enable her to understand the concept of turning thoughts into objects. ‘I thought my dad bought it at the store. I asked for a bus and then a few hours later I could touch it,’ Layla said about that first print.

But it has since proven especially useful for understanding fractures, which teachers found difficult to explain to a blind person. As no simple teaching alternatives for the blind existed, Jason just decided to make one himself. ‘I started 3D printing pieces of pie and take them down to her and explain that this is a third and this is a sixth. Because in her mind, she thought that a sixth was bigger than a third because the number is bigger,’ Jason says. Helping his daughter feel and experience objects, just as you would draw a pizza for other struggling children, really helped. ‘I see with my hands so some ideas are hard, fractions are cool. And then geography was easier once I could feel the earth,’ Kayla said of these objects.

References:

3ders.org

by Alec | Apr. 17, 2015

http://www.3ders.org/articles/20150417-father-uses-3d-printing-to-help-teach-his-blind-daughter-math.html