Will 3D printing in space allow us to build new worlds?

http://www.pbs.org/newshour/bb/will-3d-printing-space-allow-us-build-new-worlds/

Will 3D printing in space allow us to build new worlds?

So far, space travel is limited because we have to transport everything we need using rockets. But what if we could build whatever we needed? Jason Dunn, whose company built the first 3D printer to operate in space, shares his Brief but Spectacular take on the future of self-sufficiency in space travel.

TRANSCRIPT

GWEN IFILL: Now to our weekly feature Brief But Spectacular.

Tonight, we hear from Jason Dunn of Made In Space, a company based out of Singularity University, the California-based firm responsible for making the first 3-D printer to operate out of this world.

JASON DUNN, Made In Space: I think that, in our lifetime, everybody we know will have a chance to go to space.

It’s really hard to do space exploration today, because we are dependent on bringing everything on rockets from the surface of the planet. So, what we started working on was the idea of 3-D printing in space and in fact just building the things you need wherever you need it.

Today’s version of space exploration is like a camping trip. We bring everything we need with us, and, if something goes wrong, we go back home really quick or we call home and ask for some help.

So if we want to go live on Mars one day or go back to the moon and set up a base, we need to learn how to be self-sufficient in the way we explore space.

Figuring out how to make a 3-D printer work in zero gravity was one of the most difficult parts. We got to take our 3-D printers into an aircraft that flies acrobatic maneuvers in the sky. You get a little period of weightlessness and you actually float inside of the airplane.

Everything is falling into place that we can actually send people to Mars and to the moon and to the asteroids, that we can build entirely new worlds of our own like large space stations. And that’s really the vision, is that we have the entire universe at our disposal to go out and explore.

Growing up in Florida was — for me, it was a lot about exploration. I lived on the Gulf of Mexico. I had my own boat. I spent most of my days exploring mangrove swamps and estuaries and things like that.

Space is like the ocean that I grew up sitting on the edge of, and I feel like, as humanity, we’re on this — like, the surface of the planet, which is like the shore, and we’re ready to now finally go out and see what’s out in the ocean.

My name is Jason Dunn, and this is my Brief But Spectacular take on why our future will be made in space.

References:

pbs.org

http://www.pbs.org/newshour/bb/will-3d-printing-space-allow-us-build-new-worlds/

Advertisements

Objects that couldn’t be made before 3D printers existed!

http://gizmodo.com/objects-that-couldnt-be-made-before-3d-printers-existed-1718072112

Objects That Couldn't Be Made Before 3D Printers Existed

Objects That Couldn’t Be Made Before 3D Printers Existed

3D printing isn’t just for making unique stuffed animals or weird fake meat. It allows us to fabricate objects we never could with traditional manufacturing. Here are some of the incredible things we can print now, which were nearly impossible to make before.

Personalized Car Parts

3D printing can make car parts that are custom-built for the driver’s body and comfort: an ergonomic steering wheel, for example. Last month, Fortune reported Ford’s partnership with California-based 3D printing company Carbon3D. The automakers themselves can benefit from 3D printed parts, too. Instead of the ol’ Ford assembly line, engineers can make manufacturing and design more iterative with 3D printed materials, since prototyping suddenly becomes faster and cheaper and testing becomes more frequent and thorough.

You see, many products—from drinking cups to video game consoles to car parts—are created in a process called “injection molding.” That’s when a material, like glass or metal or plastic, is poured into a mold that forms the product. But with 3D printing, you can design a crazy object on your computer, and it can be turned into reality.

“3D printing bridges the gap between the digital and the physical world,” says Jonathan Jaglom, CEO of 3D printer manufacturer MakerBot, “and lets you design pretty much anything in digital form and then instantly turn it into a physical object.”

Objects That Couldn't Be Made Before 3D Printers Existed

Lighter Airplanes

There have been lots of materials used to make planes lighter, and thus more fuel efficient and greener. But 3D-printed materials can cut weight by up to 55%, according to Airbus, which announced its involvement with 3D printing last year.

In February, Australian researchers unveiled the first 3D-printed jet engine in the world.

Objects That Couldn't Be Made Before 3D Printers Existed

3D-printed polymers often have “high strength to weight ratios,” says Kristine Relja, marketing manager at Carbon3D, the same company that’s working with Ford on the 3D-printed car parts. 3D-printed plane parts use that strength-to-weight ratio to their advantage. It gives them an edge over traditional materials, like the aluminum often found in seat frames.

“If the arm rest of each seat of a plane were replaced with a high strength to weight ratio part, the overall weight of the plane would drop, increasing fuel efficiency and lowering the overall cost of the plane,” Relja says.

Objects That Couldn't Be Made Before 3D Printers Existed

Detailed Molds of Your Jaw

Possibly the arena 3D printing handedly dominates is personal health. Our bodies are unbelievably individualized, idiosyncratic flesh bags filled with biological items uniquely shaped to each person. Since customization is so critical, especially in surgical implants, 3D printing can really shine here.

Objects That Couldn't Be Made Before 3D Printers Existed

Let’s start with dental trays: Those molds of your chompers that’re made with gross cement stuff that you have to leave in your mouth for minutes on end. They’re useful because they can help dentists and orthodontists create appliances like retainers or braces, and can give them a three dimensional, kinesthetic mold of your mouth.

Over at Stratasys, the 3D printing company that owns MakerBot, 3D-printed dental trays are going from CAD file to model, blazing trails in orthodontics. It gives orthodontists and dentists a cheap, accurate glimpse into a patient’s maw. It’s way easier than those nasty physical impressions with the cement, and way less gag-inducing.

Customized Surgical Stents

Stents are those little tubes surgeons stick in the hollow parts of your body—a blood vessel or artery, say—to hold it open and allow it to function properly. Usually, they’re mesh, but stents that are 3D-printed can have an edge, since they’re able to be customized more and are made with cheaper, flexible polymers that can dissolve safely into the bloodstream in a couple years.

At the Children’s Hospital of Michigan in the Detroit Medical Center, a 17-year-old girl was suffering from an aortic aneurysm, a potentially fatal heart condition that was discovered with a precautionary EKG. That’s when Dr. Daisuke Kobayashi and his team turned to 3D printing. A 3D printed model of her heart allowed the doctors to know exactly where to put stents in an otherwise delicate operation for a young patient.

In other cases, the surgical stents themselves are 3D printed: University of Michigan doctors have also implanted 3D-printed stents just above infant boys’ lungs to open their airways help them breathe normally on their own. The advantage of using 3D printing here is that doctors were able to create custom stents that could fit the kids’ individual anatomies, quickly and cheaply.

Objects That Couldn't Be Made Before 3D Printers Existed

Buckyballs

No, not the tiny magnetic choking hazards. We’re talking about models of Buckminsterfullerene, the molecule. It’s every chemistry teacher’s dream. 3D printers can produce tangible, big models of molecules. And they’re accurate, too. This type of complex geometry is really hard to pull off with injection molding. The closest thing we had before was basically popsicle sticks and Elmer’s.

3D printing not only helps us learn more about what molecules look like by making lifesized models of them—it also helps us make actual molecules. Earlier this year, Dr. Martin Burke at the University of Illinois led the construction of a “molecule-making machine”: It’s a machine that synthesizes small, organic molecules by welding over 200 pre-made “building blocks” and then 3D printing billions of organic compound combinations. This could “revolutionize organic chemistry,” the paper in the journal Science reported, significantly speeding up the process to test new drugs.

What’s cool about 3D printing is that it makes ambitiously designed objects way more feasible. Specifically, 3D printing can make those “complex geometries” that injection molding can’t: That is, stuff that’s in obscure shapes, like long twisty mobius strips or zillion-sided polygons.

Replacement Parts for Your Organs

3D printing can be used to make surgically-implanted hardware that protects or supports damaged organs. This could lead the way to custom repairs for damaged tracheas or windpipes, for instance. Sometimes part of a windpipe needs to be removed, but the two remaining ends need to be joined together—if they can’t be joined together, the patient may die.

3D bioprinting to the rescue! It can replicate the mechanical properties of the trachea. That’s right: a living, biological tracheal replacement can be made from a mix of 3D printing and tissue engineering. That’s what the Feinstein Institute for Medical Research did. They modified a 3D printer to use a syringe filled with living cells that produce collagen and cartilage. Within hours, bioengineered tracheas can be created on-the-spot quickly and cheaply. And that’s a key strength for 3D printing: fast prototypes.

Objects That Couldn't Be Made Before 3D Printers Existed

Organs and Bones

The most futuristic use of for these magical printers? They could, one day, create internal organs. That’s a literal lifesaver for folks who need an organ transplant. Also possibly available: eyes, blood vessels, noses, ears, skin, and bones. Even hearts.

Objects That Couldn't Be Made Before 3D Printers Existed

And this isn’t just science fiction. In 2013, medical company Organovo started selling 3D-printed liver tissue. It’ll be a while before a fully functioning liver can be printed, but it’s a big step in the right direction, even if it just means prototypes and experimental liver-like structures.

As if that wasn’t incredible enough, we can also create replicas of people’s existing internal organs. With the help of CT scan data, docs can whip up three dimensional, touchable copies of individuals’ guts, in all their nuanced, unique glory. This can help medical professionals better find tumors or other irregularities. (Not to mention it could possibly take the gross awesomeness out of biology class dissections.)

And already, companies are creating cheap, 3D-printed prosthetic limbs for kids. A whole generation is growing up with 3D printing — not just as a toy, but a vital part of their bodies.

Objects That Couldn't Be Made Before 3D Printers Existed

gizmodo.com

by Bryan Lufkin | 8/11/15 4:34pm

Mainstream 3d printing

http://www.ibtimes.com.au/3d-printing-breaking-mainstream-1450988

3D Printing

3D Printing Is Breaking Into The Mainstream

Five years ago, the thought of “mainstream 3d printing” might seem a little far-fetched for the practical manufacturer. However, the technology has advanced in such a rapid pace that the number of industries applying the process continue to increase. At the moment, 3D printing can produce anything from human stem cells to airplane parts. Indeed, the possibilities with additive manufacturing are limitless.

Analysts at research company Gartner said that a technology has officially become mainstream when it reaches an adoption level of 20 percent. In 2014, a PWC survey revealed that more than two-thirds of 100 manufacturing companies were using 3D printing, with 28.9 percent stating that they were still experimenting on processes in which they would implement the in-demand technology.

Additionally, 9.6 percent of the companies revealed that they were in the stages of prototyping and production, and these companies include General Electric, Boeing and Google. Companies that belong to this tier testified to the advantageous effects of 3D printing, which include time saving and cost efficiency. Another survey held by the International Data Corporation, or IDC, revealed that 90 percent of the companies that use 3D printing are very satisfied with its benefits.

Large companies represent biggest buyers of 3D printer, but the high number of smaller and independent businesses opting to use 3D printing is still difficult to ignore. Keith Kmetz, vice president of Hardcopy Peripherals Solutions and Services at IDC, stated that companies that apply 3D printing are well aware of its positive benefits.

“These printers are typically acquired for a specific creation workflow, but once in place, the usage expands rapidly to other types of applications. The early adopters who recognized the substantial cost and time-to-market benefits of 3D printing have carried the day, but it’s their overall satisfaction and the ability to expand usage that will ultimately drive 3D printing to the next level,” said Kmetz.

In the next couple of years, more companies are expected to switch to 3D printing, and more materials will be used for a wide array of products. Currently, the most commonly used materials are basic plastics, ceramics, cement, glass and numerous metals such as titanium and aluminum. The demand for these materials will continue to increase, especially for titanium. Titanium is heavily used in the medical, aerospace, and automotive applications of 3D printing, in the form of personalised surgical implants and fuel tanks.

To sustain 3D printing’s use of titanium when it hits the mainstream, the global pipeline for the semi-precious metal should be secured for the following years. Thankfully, several mines in South America are already on their way to produce high-grade supply of titanium, such as White Mountain Titanium Corporation (OTCQB: WMTM) in Chile. White Mountain Titanium sits on a deposit in Cerro Blanco that contains 112 million tons of high-grade rutile. Companies applying 3D printing can benefit from it once the mine starts distributing the supply around the world.

ibtimes.com.au

by  | June 04 2015 12:11 AM