3D printed prosthetic jaw!

http://www.abc.net.au/news/2015-06-20/melbourne-man-receives-titanium-3d-printed-prosthetic-jaw/6536788

3D printed titanium prosthetic jaw joint bone

Titanium, 3D printed prosthetic jaw implanted in Melbourne man in Australian first surgery

Surgeons have successfully implanted a titanium 3D-printed prosthetic jaw in a Melbourne man in an Australian-first operation.

It is hoped the success of the locally designed and tested part will lead to high-tech export opportunities.

The patient, 32-year-old psychologist Richard Stratton, was missing part of his jawbone including the left condyle, the joint to the skull.

He believed part of his jaw never grew properly after he received a bad knock to the jaw during childhood.

In the past few years, he has suffered increasing pain while chewing or moving his jaw and he has not been able to fully open his mouth.

Oral and maxillofacial surgeon Dr George Dimitroulis designed a prototype prosthesis that was refined and tested by experts at Melbourne University’s mechanical engineering department.

Dr Dimitroulis said that while there had been a handful of 3D-printed jaw operations worldwide, he was not aware of any that incorporated a titanium part and a 3D-printed plastic jaw joint.

“In terms of joint replacement specifically, what we call the TMJ – the temporomandibular joint – we suspect that this may be the first 3D-printed jaw joint in the world,” he said.

It was designed to protect the skull from a rubbing metal joint which would wear and erode into the cranial cavity.

“The beauty of this particular joint itself is that it was designed in Australia and manufactured [by an Australian firm] … and not just manufactured in the common sense, but 3D printed,” he said.

“It really makes the fit truly patient-fitted, truly customised, as opposed to ‘we’re close enough’ and it’s something that I think will become the norm in the future as technology [becomes] cheaper.”

Dr Dimitroulis said it was a great example of “smart Australia” and 3D printing would lead to “revolutionary” changes in jaw prosthesis surgery.

Richard Stratton before and after surgery

Sunrise of a whole new industry

Before the operation, Mr Stratton said he was excited to be “patient X on the Australian joint” and joked that he had put in an order for a “Brad Pitt” jaw.

He hoped many more patients would benefit from having their replacement joints 3D printed and personalised to them.

“It sounds a bit [like] science fiction … I don’t really understand 3D printing that much but it’s exciting,” he said.

“They have a 3D model of my skull and the fact that they’ve made the joint to fit that perfectly, I feel a lot safer in knowing that it’s not just a factory made, off-the-shelf joint.

“Hopefully all the time they’ve spent on their computers and designing my new jaw, hopefully that will make the short-term recovery better for me and also the longer-term outcome is that it will last a lot longer and hopefully work a lot more efficiently.”

Port Melbourne firm 3D Medical used powdered titanium that was heated and fused one layer at a time to print the prosthesis.

Technicians also used CT scan images to print a 3D plastic model of Mr Stratton’s skull and then refined the titanium part to provide a perfect fit.

While this part was manufactured in New Zealand, future parts will be locally produced.

Company chairman Dr Nigel Finch said about 30 versions of the part had to be printed during the customisation process but he predicted that any future adaptation would take much less time.

“It really is the sunrise of a whole new industry,” he said.

“I think that greater support, better understanding by the regulators and better understanding by hospitals and the healthcare system, will see the adoption of 3D medical implants and other technologies starting to become mainstream.

“Most of the implants that patients receive now are generic sizing, and of course nobody really is small, medium or large.”

New 3D printed titanium jaw part for Richard Stratton attached to a 3D printed version of his skull.

On-demand printing the way of the future

Dr Finch said the cost of the technology had come down to a “truly competitive” price point compared with conventional manufacturing of parts.

The use of highly-automated machines also eliminated much of the labour cost that had traditionally made Australian manufacturing uncompetitive.

“One of the things that’s really personally exciting for me is this whole idea about bringing a manufacturing base back to Australia and focusing around the digital aspect of it,” Dr Finch said.

“We currently have a model where the hospitals are carrying inventory of generic implants, and this is very costly on the hospital’s balance sheets, very costly on the healthcare system and I can see a future where we’re manufacturing parts on an as-required basis so we’re printing on demand.”

Melbourne University biomedical engineer, Dr David Ackland, said it was “quite unusual and unexpected” to be approached by an oral and maxillofacial surgeon with a design prototype as computer simulations had mostly been performed on knee, shoulder and hip joints in the past.

“It’s very very important before you put an implant into the human body that you know that it’s going to be able to withstand the normal forces, the internal forces in the human body,” he said.

“We performed computer simulations [on the jaw prosthesis] to determine the joint loading and the loading on the implant and the screws, which of course the prosthesis would be subject to during biting and chewing.

“So we’ve done quite a comprehensive set of musculoskeletal modelling studies … to make sure that it doesn’t fail.”

Dr Ackland said 3D printing technology was still in its infancy so there were not a lot of customised components being developed or placed inside the human body.

“It’s incredibly exciting and there’s enormous potential for use of 3D printing technology to develop customised, patient-specific joint replacements and prosthetic components for a range of patients with different musculoskeletal disorders,” he said.

‘The excitement was unbearable’

Just after completing the five-hour operation, Dr Dimitroulis said he was “very proud” that three years of hard work had paid off.

“The excitement was unbearable I think, just at the last minute we thought it just wasn’t going to fit in but it just slid in nicely,” he said.

Dr Dimitroulis said patients with severe osteoarthritis of the jaw would benefit from the new implant and two patients had already signed on to receive one.

Mr Stratton said he found the pain and swelling confronting in the first few days after surgery but one month later and he was already able to open his mouth wider than before the surgery.

“The physiotherapist is really impressed and she works with these joints every day, and she says the range of movement … is a lot more than other patients that she’s worked with,” he said.

As for the “Brad Pitt” look, Mr Stratton has been clearly amused by his new chiselled jawline.

“People have have been really politely saying that it’s a huge improvement,” he laughed.

“I didn’t notice that I didn’t have a chin before, but people are now saying, ‘Wow, you’ve got such a great chin!'”

X-ray front shot

abc.net.au

by Stephanie Ferrier | 22 Jun 2015, 4:45am

Advertisements

3D printing and economic impact

http://www.abc.net.au/news/2015-04-01/3d-printing-impact-bigger-than-internet-expert-says/6365296

3D printed jet engine

3D printing will have a bigger economic impact than the internet, technology specialist says

Manufacturing industries need to embrace 3D printing, which will have an even bigger impact on economies and society than the internet, an Australian technology specialist says.

Steve Sammartino is a digital entrepreneur and venture capitalist who advises business on how to adjust to disruptive technologies and the digital revolution.

While most of us have heard about 3D printing and its potential to improve medical treatments and manufacturing processes, Mr Sammartino says 3D printing will be far more than a niche tool.

He says it will transform everything about the way we live within a matter of years.

Speaking to The World Today, Mr Sammartino said 3D printing represented an extraordinary technological shift.

“The first time I saw it, it blew my mind as well because to see actually something physically get made layer upon layer in front of you is quite astounding. I think that 3D printing will be even greater than the information revolution because it democratises manufacturing for the first time.

“We’re going to see desktop manufacturing in the same way that we saw desktop publishing and information transfer and so we can actually transfer physical products to other people who can print it at the other end, just like we would send an email or send a video.”

But while that may be good for individuals, it will be hugely disruptive for industry, and Mr Sammartino said business leaders could not afford to ignore it.

“I think you need to embrace it. Like we’ve seen with the social web, the companies that moved quickly to embrace the new tools and collaborate with their audience have been the major beneficiaries.

“In fact, the idea of making and selling items is not nearly as important as the idea of providing platforms and collaborating with your end consumers.

“So trying to fight the tide is kind of like — it’s not a strategy that’s effective for the manufacturing industry.

“The best thing they can do is work out how to use it as a platform and collaborate and get faster and quicker innovation by working with their customers and their supply chains rather than trying to fight the tide of the things that they used to make.

“Because we’ve seen with the social and informational web that’s a strategy which simply doesn’t work.”

‘It will change everything we do’

Mr Sammartino said even businesses that did not manufacture anything needed to pay attention to the technology.

“It’s just a little bit like the internet. When it arrived we thought, ‘Oh, that may be interesting for media’, but as we’ve seen it’s transformed every type of business no matter what industry.

An ear is fabricated with a 3D printer in a laboratory at Cornell University.

“The internet is an important part of our business, and 3D printing, while we can’t see exactly how that might manifest itself, there’s no doubt that it’ll change everything we do from just simple operations and the spaces we work in and in unforeseeable ways it’ll impact, I think, most businesses.

“Even the way our homes are furnished will change and the type of things that we print at home. It’ll even have an impact on our foods — we’ll be 3D printing food. Smart brands will be selling components.

“Just like the ink jet printers get sold, you might have a chocolate company selling you the ingredients that go into your 3D printing machine to print things exactly the way that you want.”

But making 3D printing more accessible will come with risks, Mr Sammartino said.

“One of the unforeseeable externalities is that I think that we have already seen 3D printed guns and one of the problems with those is that when they get used there’s no safety concerns in the manufacturing process,” he said.

“Is there a duty of care of the person sending the file or is the duty of care with the printing manufacturer or is the duty of care with the software designer that designed or scanned the file?”

He said it was an issue that needed to be considered by the Government.

“So you get all of these other legal issues that we’re going to need to be very speedy on from a government perspective so that we’re across it and we protect consumers.”

abc.net.au

by Sarah Sedghi and Eleanor Hall | 1 Apr 2015, 3:07pm

First 3D printed jet engine

Meanwhile Down Under, Scientists Build the World’s 1st 3D Printed Jet Engine!

http://www.abc.net.au/am/content/2015/s4187229.htm

Australian engineers create world’s first 3D printed jet engine.

MICHAEL BRISSENDEN: Forget trinkets and toys – 3D Printers have now entered into the realm of jet engines.

Yes, Australian engineers have created the world’s first ever 3D printed jet engine.

Their work has attracted the attention of Boeing, Airbus even the chief scientist of the US Air Force and the researchers expect it will lead to cheaper, more fuel-efficient jets.

Some even see it as a potential saviour for the manufacturing industry.

From the Australian Air Show in Avalon, here’s the ABC’s science reporter, Jake Sturmer.

(Sound of F18 jets flying overhead)

JAKE STURMER: The cutting edge of military technology is on display here at the air show.

But it’s Amaero Engineering’s tiny booth that’s gathering a large amount of attention.

AIR SHOW VISITOR: Oh, might want show my son that. He’ll be impressed.

JAKE STURMER: Amaero’s CEO, Dr Robert Hobbs, and researchers at Monash University have created the world’s first 3D printed jet engine.

In reality, the breakthrough opens the door for engineers to make and test parts in days instead of months.

(Question to Robert Hobbs) What does that mean in dollar terms? Is that cheaper engines? Is that more efficient engines?

ROBERT HOBBS: Yeah. Particularly- Well, both actually, but particularly more efficient engines because it allows them to go through the development cycle much more quickly.

JAKE STURMER: It all started two years ago when French aerospace giant Safran challenged the researchers to make a 3D printed version of one of their old jet engines.

They passed with flying colours, shaving weight off the turbines in the process.

They’re now working on top secret prototypes for Boeing, Airbus and defence contractor, Raytheon.

There are potentially massive deals on the table and it’s all made in a lab in the suburbs of Melbourne.

(Sound of 3D printer working)

The small garage-sized facility is home to the world’s largest printer of its kind.

Technically known as additive manufacturing, it uses a high powered laser to fuse powdered nickel, titanium or aluminium into the shape of objects.

Monash University’s Vice-Provost for Research, Professor Ian Smith, says the potential is virtually limitless.

IAN SMITH: It’s opened the door. We’re only scratching the tip of the iceberg. We’ve talked about how it can be useful in the aerospace industry, we see enormous applications in the biomedical industry.

For, for example, if you’re unfortunate enough to have one of those serious car accidents, you can be scanned in the scanner, that information can then be taken to a 3D printer and while you’re in the operating table we can print those precise body parts that you might need.

JAKE STURMER: Spare parts for people and potentially cars too – a chance to stave off a decline in manufacturing.

IAN SMITH: We’ve all heard the demise of the motor industry and that’s bad but I think the real impact has been the demise of the supply chain industry that supports that motor industry.

We would like to think that revolutionary disruptive technologies like this, can take the place of some of the more traditional industries, and we can build new industries or we can regenerate existing industries with these kinds of technologies.

MICHAEL BRISSENDEN: The ABC’s science reporter Jake Sturmer speaking to Monash University’s Professor Ian Smith.

ABC.NET.AU
by Jake Sturmer | Thursday, February 26, 2015 08:26:36

3D printing and medicine – ethical debate

An Interesting Ethical Debate About 3D Prinnting and Medicine.

http://www.abc.net.au/science/articles/2015/…/11/4161675.htm

3D printed titanium heel

3D printing can offer great benefits in medicine, but it also raises a number of ethical questions as the technology develops, says Susan Dodds.

Three-dimensional printing technologies have the genuine potential to improve medical treatments for conditions ranging from bone cancer and arthritis to glaucoma and hearing loss.

Already 3D bioprinting allows orthopaedic surgeons to print artificial bone from a scan of the patient, printing existing surgical materials to precisely the right shape to replace missing or damaged bone. For example, the technique has been recently used to create skull implants for people with head trauma and a titanium heel (pictured right) to replace heel bone that had been eaten away by cancer.

In the future, 3D printing technologies may be used together with advances in stem cell research to print living bone cells from patients’ own cells or functioning organs for transplant (such as kidneys or hearts).

3D bioprinting is one of the latest developments in ‘personalised medicine’.

The technology could enable doctors to tailor treatments to individual patients, rather than developing a treatment that works well for most patients with that condition.

But 3D bioprinting also raises a number of ethical questions that will need to be considered as these technologies develop.

Three ethical issues that are raised are: justice in access to health care, testing for safety and efficacy, and whether these technologies should be used to enhance the capacity of individuals beyond what is ‘normal’ for humans.

Justice and access

One major concern about the development of personalised medicine is the cost of treatments. Until recently it has been thought that advances in personalised medicine go hand-in-hand with increasing disparities in health between rich and poor. Should these treatments only be available to those who can pay the additional cost? If so, then those patients who lack financial resources may not receive effective treatments that others can access for a range of serious conditions.

Personalised medicine is most closely associated with research in genomics and stem cell therapies.

Advantages of personalising medicine are most obvious in cases where the condition affects patients in very different ways and standardised treatments offer imperfect benefits. For example, conditions affecting the growing bones of children are among those where personalising treatments, if these can be adapted to the rapidly changing bodies of children, can make a very big difference in the child’s comfort and capacity to participate in ordinary childhood activities and play.

Until recently, the cost and time required to provide a series of customised prostheses of different sizes for a child who has lost a leg to cancer, for example, has been prohibitive for many patients. 3D printing will bring down the time and cost of customising and producing prosthetic legs. In cases like that of Ben Chandler, printers can also be used for implants, which might avoid the need to amputate the original limb, even where significant bone loss has occurred.

The capacity to use 3D printing technology to substantially reduce the cost of prosthetics, or orthopaedic surgery to restore lost bone structures, means that this area of personalised medicine can avoid the criticism that personalised medicine inevitably increases the cost of health care and puts effective personalised treatments out of the reach of many patients.

Will 3D printing treatments be safe?

A second ethical concern about any new treatment, including the use of 3D printing, is how we can test that the treatment is safe and effective before it is offered as a clinical treatment.

In the case of 3D printing to replace bone, the materials used — for example titanium — are those already used for orthopaedic surgery, and have been tested for safety over a long period and with many patients, so it is unlikely that there are new risks from the materials.

In the future, 3D printing may be used in combination with stem cell derived cell lines.

This could lead to the development of printed functioning organs that can replace a patient’s damaged organ, but without the risk or rejection associated with donor organs, because it uses that patient’s own cells.

How can we know in advance that these treatments are safe? Unlike the case of developing a new drug, a stem cell therapy can’t be tested on a sizable number of healthy people prior to being tested on patients and then, finally, being made available as a standard treatment. The point of using a patient’s own stem cells is to tailor the treatment quite specifically to that patient, and not to develop a treatment that can be tested on anybody else.

Researchers combining 3D printing with personalised stem cell therapies beyond the experimental stage will need to develop new models for testing their treatments for safety and effectiveness.

Regulatory bodies that give approval for new treatments, such as Australia’s Therapeutic Goods Administration (TGA), will also need to establish new standards of testing for regulatory approval before these treatments can become readily available.

This means that even if researchers were ready to print a functioning prosthetic organ, it will be quite some time before patients with kidney disease should expect to be offered a 3D printed prosthetic kidney that uses their stem cells as a routine treatment.

Human enhancement

The third issue is whether or not we should use 3D printing for human enhancement.

If the technology can be used to develop replacement organs and bones, couldn’t it also be used to develop human capacities beyond what is normal for human beings?

For example, should we consider replacing our existing bones with artificial ones that are stronger and more flexible, less likely to break; or improving muscle tissue so that it is more resilient and less likely to become fatigued, or implanting new lungs that oxygenate blood more efficiently, even in a more polluted environment?

The debate about human enhancement is familiar to the context of elite sport where athletes have sought to use medical technology to extend their speed, strength or endurance beyond what is ‘natural’, or what they are able to achieve without drugs or supplements. In that context use of performance enhancing drugs is considered to cheat other athletes, unbalancing the level playing field.

In the case of 3D bioprinting enhancement of human capacities could be associated with the military use of the technology and the idea that it would be an advantage if our soldiers were less susceptible to being wounded, fatigued or harmed in battle.

While it is clear that it would be preferable for military personnel to be less vulnerable to physical harm, the history of military technology suggests that 3D printing could lead to a new kind of arms race. Increasing the defences that soldiers have in the face of battle would lead to increasing the destructive power of weapons to overcome those defences. And in so doing, increasing the harm to which civilians are exposed.

In this way 3D printing may open up a new gap in the vulnerabilities of “enhanced” combatants and civilians, at a time when the traditional moral rules concerning warfare and legitimate targets is muddied by terrorism and insurgency.

These three points might just be scratching the surface of new, deeper ethical and social issues that will emerge as the technology progresses.

The future of 3D bioprinting applications holds the promise of better treatment while challenging communities to address emerging ethical questions.

ABC.NET.AU
by Professor Susan Dodds | 11 February 2015