Will 3D printing work on fitness gear?

http://www.shape.com/lifestyle/workout-clothes-gear/will-3d-printing-work-fitness-gear

Will 3D Printing Work on Fitness Gear?

Will 3D Printing Work on Fitness Gear?

The perfect sneakers, custom leggings—we asked an expert if the 3D printing technology trend could really change the fitness world.

Of all the crazy new advances in tech—new wearable technology that helps you break bad habits, computers you wear on your wrist (hello,Apple watch), even sportsbras that combine wearable tech and fitness gear—hearing about 3D-printed wellness gadgets are one of those things that makes us feel like we’re living in the future. You’re telling me that you can use a printer to make actual, physical objects? It sounds like something straight out of sci-fi.

And while hearing about 3Dprinted houses and makeup is cool, what we’re most interested in is how the new technology will change fitness. Imagine a world where you could 3D print the perfect pair of running shoes, custom molded to your foot, for example.

In fact, Nike, Brooks, and New Balance have all already dabbled in 3D-printed athletic shoes. And custom-printed shoe insoles will soon be on the market: SOLS ($125, sols.com) has you take measurements of your feet using their app, then prints you insoles in any one of a number of fabrics (leather for work shoes, something sweat-wicking for sneakers). Plus, they’re, a fraction of the cost of many orthotics. (Whether you wear insoles or not, you should definitely be stretching your feet post-workout.)

But footwear isn’t the only thing that can benefit from 3D printing. EXO-L is a company that’s creating custom-made ankle braces, designed to keep athletes safer on the field or court. Other companies are offering molded-to-you mouth guards. You can even buy specially fitted, never-slip-out-again headphones ($200, nrml.com). All these products use 3D printing technology for ultra-customized end products. The benefits go way beyond personal comfort, though: 3D printing enables doctors to create comfortable, affordable prosthetics for people missing limbs too. (Check out Team Unlimbited’s e-NABLE blog for more information.)

“3D-printed fitness gear has some serious pros, the most obvious of which is customization,” says Pieter Strikwerda, the co-CEO and founder of 3DPrinting.com. “But also it requires less production time from the idea to the finished product.”

Still, can 3D printed products really stand up to traditionally-made gear, especially higher-end products? Strikwerda says yes. “Printing techniques are getting better every day, and so are the materials being used,” he says. “Look at NASA—they’re using printing techniques to print metal parts for their engines, not only because it’s lighter and more efficient but also because those parts are stronger.” (This fitness equipment just looks like science fiction.)

That said, cautions Strikwerda, “the whole process of 3D modeling and scanning, choosing the right material, and so on is still really complex. It’s not a plug-and-play machine yet.” So we’re not quite at the point where we’ll be able to print out a spare pair of running shoes or fit-like-a-glove leggings from the comfort of our own homes. But until we get there, at least we can finally get our hands on ear buds that won’t slip out during our workout, and insoles that make our run feel better without breaking the bank. That feels pretty futuristic to us.

shape.com

by  | Aug 31, 2015

3D prints robotic ants and butterflies

http://3dprinting.com/news/festo-3d-prints-robotic-ants-butterflies/

Three BionicANTs working together as one mimicking ant behaviour. Source: Festo

Festo 3D Prints Robotic Ants and Butterflies

Festo is an industry leader in advanced robotics and they have presented two of their projects: BionicANTs and eMotionButterfiles only made possible by using laser sintering 3D printing and 3D MID ( Molded Interconnect Device) technology. 3D MID is a control and power system where electrical circuits are attached on the surface of the laser sintered body components during the construction, and they thereby take on design and electrical functions at the same time. In this way, all the technical components can be fitted into or on the 3D printed body and be exactly coordinated with each other for complex actions of a insectoid robot.

BionicANTs

BionicANTS are biomimetic robots that modeled to resemble real ants in anatomy and behaviour. ANT stands for Autonomous Networking Technologies, and they are designed as a sort of small prototype of future applications  the factory floor, where the production systems will be founded on adaptable and intelligent components able to work under a higher overall control hierarchy. Their body as well as software mimic natural behaviour of group of ants working together. Each BionicANT measures 13.5 cm (5.3 in) and runs on two 7.2 V batteries charged when the antennae touch metal bars running along the sides of an enclosure.

Three BionicANTs working together as one mimicking ant behaviour. Source: Festo

Official brochure notes:

“After being put into operation, an external control system is no longer required. It is possible, however, to monitor all the parameters wirelessly and to make a regulating intervention. The BionicANTs also come very close to their natural role model in terms of design and constructional layout. Even the mouth instrument used for gripping objects is replicated in very accurate detail. The pincer movement is provided by two piezo-ceramic bending transducers, which are built into the jaw as actuators. If a voltage is applied to the tiny plates, they deflect and pass on the direction of movement mechanically to the gripping jaws. All actions are based on a distributed set of rules, which have been worked out in advance using mathematical modelling and simulations and are stored on every ant. The control strategy provides for a multi-agent system in which the participants are not hierarchically ordered. Instead, all the BionicANTs contribute to the process of finding a solution together by means of distributed intelligence. The information exchange between the ants required for this takes place via the radio module located in the torso. The ants use the 3D stereo camera in their head to identify the gripping object as well as for self-localisation purposes. With its help, each ant is able to contextualise itself in its environment using landmarks. The opto-electrical sensor in the abdomen uses the floor structure to tell how the ant is moving in relation to the ground. With both systems combined, each ant knows its position – even if its sight is temporarily impaired.”

With on-board batteries the ANT can work for 40 minutes.

eMotionButterflies

Designed to mimic real butterflies, this small robots are ultralight and have coordinated flying behaviour in a collective. They are are able to autonomously avoid crashing into each other in real-time controlled by networked external guidance and monitoring system with 10 cameras, interior GPS and IR markers on their bodies. The entire system is very impressive combination of prcise guidance, raw processing power, optical tracking and delicate 3D printed flying robot design.

Technical specifications of entire system:

  • 10 infrared cameras
  • Frame rate: 160 images per second
  • Exposure time: 250 µs
  • 1 central master computer
  • Analysed pixels: 3.7 billion pixels per second
  • Flying object:
  • Wingspan: 50 cm
  • Weight: 32 g
  • Wing beat frequency: approx. 1–2 Hz
  • Flying speed: 1–2.5 m/s
  • Flying time: 3–4 min.
  • Recharging time: 15 min.
  • Integrated components: 1 ATxmega32E5 microcontroller , 1 ATmega328 microcontroller, 2 servo motors made by MARK STAR Servo-tech Co., Ltd. to activate the wings, 1 inertial sensor (inertial measurement unit, IMU) MPU-9150 with gyroscope, accelerometer and compass, 2 radio modules, 2 LiPo cells 7.4 V 90 mAh, 2 infrared LEDs as active markers

eMotionButterflies flying in formation Source: Festo

eMotionButterflies flying in formation Source: Festo

You can get more information about this wonderful looking 3D printed insectoids on Festo homepage:
http://www.festo.com/cms/en_corp/9617.htm

I do not fear 3D printed robotic insects. They most likely come as friends. Most likely.

3dprinting.com

by

3D printed Meditational Cocoon

A ‘Meditational Cocoon’ Took 3 Months to Print and Consists of 500 3D Printed Bricks

http://goo.gl/PQ4dhT

When it comes to architecture, professionals are using 3D printing techniques to create lots of different things. All eyes are on WinSun, the Chinese company that 3D prints entire buildings, but there are many more interesting projects to discover. A 3D printed wall? Check. Architectural artworks? Check. A 3D printed cocoon to bring you in a state of meditation? No, we haven’t heard that one before. Nevertheless, this is what French company Meïsō has been working on. Their 3D printed meditational cocoon will be unveiled in Paris next month.

This cocoon is a floatation tank, also known as an isolation tank. The idea is to step into the ‘tank’ without clothes and to lie in salt water. Stress and anxiety seem to go away, and what stays is a state of relaxation. So that was the idea, and Meïsō discovered that this kind of therapy wasn’t huge or anything near that in France yet. By using 3D printing techniques, the company was able to create a floatation tank in a faster and cheaper way. The costs? 4,000 euros for the 3D printed pre-mold, and 1,000 euros for the industrial mold. They saved as much as 60,000 euros thank to the technique.

So how long did it take them to create something like this with 3D printing techniques? The printing time for all 500 individual bricks was three months. They then combined those bricks and assembled them to create the float tank. Another two weeks were required to coat and sand the float tank, and it was painted and coated in fiberglass.

If you would to under a new experience which combines 3D printing with architecture and therapy, then the La Paillasse float space in Paris is the place for you to visit. This is where the prototype is currently being installed. It will be unveiled next month. So who are the potential users of such a meditational cocoon? Obviously, people who suffer from stress are the target group, but it also seems to be useful in different situations. People who suffer from chronic back pain, pregnant women in their last semester and trained athletes can make use of this cocoon. Will it help? We guess they have to find that out themselves.

3DPRINTING.COM
by