3D printed organs for TV series Grey’s Anatomy!

A 3D Printed Heart and Liver Were Recently Featured on the Popular TV Series Grey’s Anatomy!

http://goo.gl/5AeOBh

Greys Anatomy 3d printer

Gray’s Anatomy, the textbook of human anatomy originally written by Henry Gray and illustrated by Henry Vandyke Carter, was widely regarded as the seminal work on the subject and it’s still revised and republished today.

Since its publication in 1858, it has served as a crucial guide to doctors and surgeons in their daily work, but it’s a safe bet that Gray and Carter didn’t see it coming that their work would one day influence hospital dramas like ABC’s hit “Grey’s Anatomy,” and less likely still that they’d foresee that show discovering 3D printing.

Now that 3D printing technology has reached into the operating theater,  the American consciousness, and even into living rooms in the heartland, Gray and Carter would surely be proud.

The doctors at Grey Sloan Memorial were featured using 3D printing in one episode from season 10 where Dr. Yang 3D prints a “portal vein,” and Dr. Grey attempts to 3D print a heart. In fact, at the end of that episode, Dr. Yang discovers that, on her trip to Switzerland, 3D printing is widely used by medical professionals there.

greyspart2

One Dr. Burke goes as far as to say Dr. Yang’s dream is to build fully-functional, 3D printed hearts.

And the series is at it again with an appearance from a CubeX 3D printer which the Grey’s staff used to build a customized heart and liver model. The model of a patient’s heart and liver used on the show was designed and 3D printed by 3D Systems in conjunction with their entertainment division, Gentle Giant Studios, and it was printed by their medical solutions division,Medical Modeling.

Medical Modeling was built on the idea that medical imaging studies could be used for diagnosis and to drive clinical treatment, and they’ve developed surgical planning and clinical transfer tools. To date, the company has worked with surgeons around the world on tens of thousands of cases. They were also acquired by 3DS in April 2014, becoming part of the larger 3D printing revolution.

At this stage, engineering-based solutions for reconstructive surgical problemsare a part of the standard medical tool kit, and customized prosthetics are common.

greys-anatomy

Medical Modeling says 3D printing is used in hospitals around the world for applications ranging from surgical pre-visualization to treatment planning and training.

To make the heart model, the team used a ProJet 660Pro, taking the idea from a photo of a simple sketch on a napkin to a fully-printed model in just four days.

3DS says the anatomically correct, full-color model needed to fit the script, appear life-like, and be fully 3D printable. The creation process took place through a number of design iterations during which the “Grey’s Anatomy” production team reviewed the models and provided feedback, and the Medical Modeling team used Geomagic Freeform software to create the finished product.

Now that prime-time television has embraced the medical uses of 3D printing, how long do you think it will be before patients are asking to see models to help them understand their treatment options? Let us know in the Grey’s Anatomy Medical 3D Printing forum thread on 3DPB.com.

3DPRINT.COM
by  | FEBRUARY 9, 2015
Advertisements

3D printed baby’s heart

Another medical marvel brought about by 3D printing! A two-week old infant’s life saved as a 3D printed replica of the baby’s heart was used to assist in complicated heart surgery! 🙂

http://www.independent.co.uk/…/3d-printed-heart-saves-babys…

Surgeons at a New York hospital have credited 3D printing with helping to save the life of a 2-week-old baby who required complicated heart surgery.

Surgeons at a New York hospital have credited 3D printing with helping to save the life of a 2-week-old baby who required complicated heart surgery.

Using MRI scan data, Morgan Stanley Children’s Hospital in New York City 3D printed a copy of the child’s heart, which was both riddled with holes and structured unusually.

Surgery was going to be complicated and dangerous, but this 3D printed heart provided the surgeons the opportunity to study the organ, and develop a detailed surgery strategy.

“The baby’s heart had holes, which are not uncommon with CHD, but the heart chambers were also in an unusual formation, rather like a maze,” Dr Emile Bacha, who performed the surgery,told Connecticut local media.

“In the past we had to stop the heart and look inside to decide what to do. With this technique, it was like we had a road map to guide us. We were able to repair the baby’s heart with one operation.”

The project was funded by Matthew’s Hearts of Hope, a Connecticut –based foundation.

They have said that another 3D printed heart is in the making, with details to follow in the next month.

Marie Hatcher, the foundation’s founder, told The Independent:“This is a game changer for CHD babies with complicated heart anatomy.

Normally the first time the surgeon sees the heart is when the chest is open, now they have the ability to plan out the surgery ahead of time while looking at a 3 D Heart of the baby or child’s heart.”

This is yet another example of 3D printing coming to the fore of cutting-edge medical technology. Just the other day, Kentucky surgeon Erle Austin also credited 3D printing with improving the odds of succeeding in the most difficult surgeries, reports Wired.

“I’m using 3D printing to help me understand a complicated heart,” he told Maker Faire in Rome.

Like the team at Morgan Stanley, Austin had used the technology to inform his approach to heart surgery on a young child at Kosair Children’s Hospital.

“If I went in and did surgery, took off the front of the heart and did irreparable damage, the child would not survive.”

Using an experimental version of the Makerbot Replicator 2, Austin printed a copy of the heart in three parts.

He said: “Because I have an identical reconstruction I can take off the front of the heart and see inside of it and make a plan as to how I’m going to direct the flow of blood and move the obstruction in the heart.”

INDEPENDENT.CO.UK

by ZACHARY DAVIES BOREN | 06 October 2014