3D printed ‘super batteries’ from graphene ink!

http://www.wired.co.uk/news/archive/2015-08/10/graphene-3d-printed-super-batteries

‘Super batteries’ to be 3D printed from graphene ink

Manchester Metropolitan University is embarking on a project to 3D print “super batteries” from graphene ink.

Wonder material graphene has been widely talked about in terms of its suitability for use in batteries, due to its impressive conductivity, but scientists have struggled with the fact it also has a relatively small surface area, which affects capacity.

3D printing, where layers of graphene are assembled on top of one another, maximising surface area in the process, offers a solution. Now researchers at MMU are analysing techniques for printing with conductive graphene ink, in order to try and create batteries, supercapacitors and other energy storage devices with the help of a grant from the Engineering and Physical Sciences Research Council.

“We’re trying to achieve a conductive ink that blends the fantastic properties of graphene with the ease of use of 3D printing to be manipulated into a structure that’s beneficial for batteries and supercapacitors,” explains Craig Banks, a professor of electrochemical and nanotechnology and leader of the three and a half-year project. The batteries and supercapacitors would be used to power phones and tablets, or for solar, wind and wave power storage.

“Energy storage systems (ESS) are critical to address climate change and, as clean energy is generated through a variety of ways, an efficient way to store this energy is required,” says Banks, whose work on graphene’s conductivity has been cited over 9,000 times, making him one the world’s most-cited scientists. “Lithium and sodium ion batteries and super/ultracapacitors are promising approaches to achieve this. This project will be utilising the reported benefits of graphene — it is more conductive than metal — and applying these into ESS.”

The combination of the conductivity from the graphene and the 3D nature of the structures, which have “high surface areas, good electrical properties and hierarchical pore structures/porous channels”, should increase the storage capabilities of batteries to meet future demands.

As well as working on the graphene ink, the 3D printing process also must be refined. It currently relies on each layer of graphene being left to “cure” for an hour before the next layer can be applied. Banks is hoping to find a method to speed this process up, perhaps by using UV light. “Ideally, we could have the brilliant scenario where you just plug in and go — printing whatever structure you want out of graphene from a machine on your desk,” he says.

Graphene was discovered in 2004 at the University of Manchester, which has recently become the home of the National Graphene Institute — a £61 million building to house the university’s groundbreaking work. This particular research will be taking place at MMU rather than at the University of Manchester, but it is yet another project that shows the city remains a world-renowned centre for research graphene.

wired.co.uk

by KATIE COLLINS | 10 AUGUST 15

Advertisements

First 3D printed battery

http://www.engadget.com/2015/04/15/rocket-lab-rutherford-engine/

Startup launches first 3D printed battery – powered rocket (update)

Rocket Lab is a Lockheed Martin-funded startup that dreams of taking small satellites to space for an affordable price — but it wants to do so using technology quite different than usual. See, the company has revealed that its engine called the “Rutherford” is (1) composed mostly of 3D-printed parts, and (2) uses batteries instead of liquid fuel. It will be paired up with the company’s Electron launch system, and together they make up the first battery-powered rocket, or so the startup claims. Its batteries power the turbopumps that deliver propellant to the engine.*

The company says it takes merely three days to print the components of the Rutherford engine out of titanium and other alloys, using an advanced form of 3D printing called “electron beam melting.” (If those components are manufactured via traditional means, it will take up to a month instead.) That means Rocket Labs’, well, rockets can be manufactured faster and will cost clients less money per launch. In fact, the startup believes it will cost only around $4.9 million to send the 65 feet x 3 feet system to space, carrying a payload that weighs up to 220 pounds. It plans to start ferrying satellites and other payloads out there in 2016.

Update: As many of you pointed out, the Rutherford-Electron rocket doesn’t use electric propulsion and still uses liquid fuel like typical rockets. We apologize for the confusion. [Thanks, Nik and RiotingSpectre].

engadget.com

by Mariella Moon | April 15th 2015 At 2:02pm

3D printed kidneys

Thanks to innovative ink from Harvard’s Lewis Lab.

A 3D-printed battery the size of a grain of sand made its debut earlier this year, with the help of Harvard Professor Jennifer Lewis, a core faculty member at the Wyss Institute. To achieve the feat, Lewis and her team had to create specialized, “disappearing” inks — inks so unique they’re making more than microbatteries; they’re close to creating fully-functioning printed kidneys.

Jennifer Lewis spoke at the MIT Technology Review’s EmTech conference Tuesday about microscale 3D printing. Harvard’s Lewis Lab is focused on the directed and self-assembly of soft functional materials, and has made progress in creating human tissues that include rudimentary blood vessels, all with a 3D printer.

The 3D printer builds the tissue in layers, as well as various types of cells and materials. Lewis’s team has constructed “hollow, tube-like structures within a mesh of printed cells using an ‘ink’ that liquefies as it cools,” according to the MIT Technology Review. Once liquefied, the ink can be removed with a light vacuum, leaving behind an empty channel to then be infused with the cells that normally line the body’s blood vessels.

At EmTech, Lewis said “her group is using the same approach to making the tubes inside kidneys that help filter blood.” The team is starting with kidneys, “because they account for 80 percent of the need for organ transplants.”

A lot of work still needs to be done until patients start receiving 3D-printed organs. On stage Tuesday, Lewis said there are still challenges in sustaining cells and keeping them viable as researchers are printing.

“We’ll probably never be able to print the capillaries, which are on the order of 10 microns,” Lewis added. “Our thinking about this is to use top-down printing to create some overarching structure, and then let biology do the rest.”

BOSTINNO.STREETWISE.CO
by  | 09/25/14 2:11pm