3D printed and solar-powered pavilion!

http://curbed.com/archives/2015/08/26/solar-pavilion-3d-printing.php

Solar_Bytes_Pavilion_110.jpg

This Experimental Pavilion Is 3D-Printed and Solar-Powered

In yet another experiment proving the merits of 3D printing technology, Kent State University in Ohio has erected a 3D-printed sculpture called the Solar Bytes Pavilion, designed by assistant professor Brian Peters. Comprising 94 modules made of 3D-printed, translucent plasticeach embedded with photovoltaic cells—the arch provides shade during the day and emits a mellow white glow at night. The structural detail, the joinery, the east-west placement of the arch, the variability of how each module emits light; each point to a carefully considered design. The best part? Much of the structure can be recycled after use. At the end of its time on campus, the installation’s modules will be taken apart, shredded, and the material made into something new.

Solar_Bytes_Pavilion_13.jpg

Solar_Bytes_Pavilion_114.jpg

Solar_Bytes_Pavilion_18.jpg

curbed.com

by Komal Sharma | Wednesday, August 26, 2015

3D printed Chi flute

http://3dprint.com/91641/ancient-chi-transverse-flute/

Ancient Chi Transverse Flute Gets 3D Printed Reincarnation

If you had been living the high life near the Marquis Yi of Zeng in 433 BC, you might have been lucky enough to hear a performance on the Chi (篪), a transverse flute that was most likely used for court and ritual music. Unfortunately, in the more likely event that you weren’t, the instrument declined in favor, for reasons not entirely certain, and largely disappeared from music history. However, over the last few decades, there has been a small, but devoted, interest in bringing this instrument back to life.

hb_2006.156

One person who has shown an interest in this instrument is the musician Cheong Li who decided as part of studying the instrument that he would try to create a 3D printed one. This application of 3D printing technology opens up a world for the study of extinct instruments, as explained by Lee in an interview with 3Dprint.com:

“I’m a musician and a novice to 3D printing. I’m not that capable in woodwork, but 3D printing allows me to draw and design my own instrument easily. One thing I’m particularly interested in is music archaeology. There are quite a lot of ancient instruments that have been forgotten or abandoned in the course of history. It would be very interesting to make them and be able to actually hear what they sound like.”

The Chi is a particularly unique instrument. Unlike the flute, fife, or recorder, the air is introduced into the instrument in the center and the holes for fingering are on either side of the mouthpiece. The ends of the flute are actually closed and the sound is produced as the air is blown into and then escapes from the holes that are used for fingering. Information about the flute is scarce and Lee is having to discover the instrument’s secrets the old fashioned way: trial and error.

F5

The position of the holes doesn’t seem to have much impact on the pitch but rather it is their size that has the greatest effect. The fingering itself is irregular, meaning that rather than playing a scale by lifting successive fingers, each note has a unique fingering configuration. As part of understanding the instrument, Lee has created a fingering chart in an effort to codify the relationships between pitch, frequency, and finger position.

He described the process of designing the instrument in preparation for 3D printing:

“I’ve been using Rhino for Mac. It wasn’t too difficult to draw a simple tube like this. However, the most difficult thing is to determine where I should put the finger holes. I’ve spent some time studying pictures of Chi from various sources and tried to figure out the exact measurements. The tuning is not quite accurate yet and I think I’ll need to rework it.”

He printed his instrument as a single piece with the exception of a final cap for the end which was printed separately and then glued into place. The printing was done via 3D Hubs on a FlashForge Creator Pro and took only a few hours to complete. The instrument Lee printed is created entirely in PLA and the interior dimension is 14.2 cm with an extra centimeter on each end that acts as the wall.

Screen Shot 2015-08-25 at 11.03.04 AM

Now that his flute is printed, it seems to have raised more questions than it resolved and Lee plans on diving further into understanding its mysteries.

“There are quite a few questions about this instrument that intrigue me,” Lee notes. “For example, why is the fingering so unpredictable? How does a closed tube sound different from an open tube? To understand these things, I may need to collaborate with a scientist to calculate the physics behind it. It may help to solve a mystery in music history, and if possible, I hope that this instrument can be mass produced and played by more musicians. I’d love to write a tune for it as well!”

This is the third instrument that Lee has created through 3D printing; the first was a Xun, which is an egg-shaped blowing vessel, and the second a sliding whistle. The opportunity to truly understand an instrument that is presented through creating the instrument itself adds a new level of interaction that is open to more and more people through 3D technology. We may never know the way this instrument sounded when it was played 2,000 years ago, but thanks to 3D printing, we can hear it as it has been reincarnated today.

What do you think about the use of 3D printing to re-create ancient instruments? Let us know your thoughts in the 3D Printed Chi Flute forum thread over at 3DPB.com.

3dprint.com

by  | AUGUST 27, 2015

3D printing microscopic fish

http://phys.org/news/2015-08-3d-printing-microscopic-fish-team-method.html

These microscopic fish are 3-D-printed to do more than swim

3D-printing microscopic fish: Team demonstrates novel method to build robots with complex shapes, functionalities

Nanoengineers at the University of California, San Diego used an innovative 3D printing technology they developed to manufacture multipurpose fish-shaped microrobots—called microfish—that swim around efficiently in liquids, are chemically powered by hydrogen peroxide and magnetically controlled. These proof-of-concept synthetic microfish will inspire a new generation of “smart” microrobots that have diverse capabilities such as detoxification, sensing and directed drug delivery, researchers said.

The technique used to fabricate the microfish provides numerous improvements over other methods traditionally employed to create microrobots with various locomotion mechanisms, such as microjet engines, microdrillers and microrockets. Most of these microrobots are incapable of performing more sophisticated tasks because they feature simple designs—such as spherical or cylindrical structures—and are made of homogeneous inorganic materials. In this new study, researchers demonstrated a simple way to create more complex microrobots.

The research, led by Professors Shaochen Chen and Joseph Wang of the NanoEngineering Department at the UC San Diego, was published in the Aug. 12 issue of the journal Advanced Materials.

By combining Chen’s 3D printing technology with Wang’s expertise in microrobots, the team was able to custom-build microfish that can do more than simply swim around when placed in a solution containing hydrogen peroxide. Nanoengineers were able to easily add functional nanoparticles into certain parts of the microfish bodies. They installed platinum nanoparticles in the tails, which react with to propel the microfish forward, and magnetic in the heads, which allowed them to be steered with magnets.

“We have developed an entirely new method to engineer nature-inspired microscopic swimmers that have complex geometric structures and are smaller than the width of a human hair. With this method, we can easily integrate different functions inside these tiny robotic swimmers for a broad spectrum of applications,” said the co-first author Wei Zhu, a nanoengineering Ph.D. student in Chen’s research group at the Jacobs School of Engineering at UC San Diego.

These microscopic fish are 3-D-printed to do more than swim

As a proof-of-concept demonstration, the researchers incorporated toxin-neutralizing nanoparticles throughout the bodies of the microfish. Specifically, the researchers mixed in polydiacetylene (PDA) nanoparticles, which capture harmful pore-forming toxins such as the ones found in bee venom. The researchers noted that the powerful swimming of the microfish in solution greatly enhanced their ability to clean up toxins. When the PDA nanoparticles bind with toxin molecules, they become fluorescent and emit red-colored light. The team was able to monitor the detoxification ability of the microfish by the intensity of their red glow.

“The neat thing about this experiment is that it shows how the microfish can doubly serve as detoxification systems and as toxin sensors,” said Zhu.

“Another exciting possibility we could explore is to encapsulate medicines inside the microfish and use them for directed drug delivery,” said Jinxing Li, the other co-first author of the study and a nanoengineering Ph.D. student in Wang’s research group.

These microscopic fish are 3-D-printed to do more than swim

How this new 3D printing technology works

The new microfish fabrication method is based on a rapid, high-resolution 3D printing technology called microscale continuous optical printing (μCOP), which was developed in Chen’s lab. Some of the benefits of the μCOP technology are speed, scalability, precision and flexibility. Within seconds, the researchers can print an array containing hundreds of microfish, each measuring 120 microns long and 30 microns thick. This process also does not require the use of harsh chemicals. Because the μCOP technology is digitized, the researchers could easily experiment with different designs for their microfish, including shark and manta ray shapes.

“With our 3D , we are not limited to just fish shapes. We can rapidly build microrobots inspired by other biological organisms such as birds,” said Zhu.

The key component of the μCOP technology is a digital micromirror array device (DMD) chip, which contains approximately two million micromirrors. Each micromirror is individually controlled to project UV light in the desired pattern (in this case, a fish shape) onto a photosensitive material, which solidifies upon exposure to UV light. The microfish are built using a photosensitive material and are constructed one layer at a time, allowing each set of functional nanoparticles to be “printed” into specific parts of the fish bodies.

“This method has made it easier for us to test different designs for these microrobots and to test different nanoparticles to insert new functional elements into these tiny structures. It’s my personal hope to further this research to eventually develop surgical that operate safer and with more precision,” said Li.

More information: “3D-Printed Artificial Microfish” by Wei Zhu, Jinxing Li, Yew J. Leong, Isaac Rozen, Xin Qu, Renfeng Dong, Zhiguang Wu, Wei Gao, Peter H. Chung, Joseph Wang, and Shaochen Chen, all of the Department of NanoEngineering at the UC San Diego Jacobs School of Engineering. This paper was featured as a cover on the Aug. 12, 2015 issue of the journal Advanced Materials. onlinelibrary.wiley.com/wol1/doi/10.1002/adma.201501372/abstract

 

 

Injured toucan

http://www.cnet.com/news/injured-toucan-gets-new-beak-courtesy-of-3d-printing/

Injured toucan gets beak repair courtesy of 3D printing

A custom prosthetic beak-piece helps a toucan rescued from animal smugglers eat and groom normally once again.

3D printing isn’t just for people to make tchotchkes, buildings and Kraken dice. There’s a whole realm of the 3D-printing world involved with helping out animals who need a leg (Derby the dog), face (Akut-3 the turtle) or foot (Ozzie the goose). We can now welcome Tieta the toucan to their ranks.

Tieta was rescued in Brazil from an illegal animal seller. Half of her upper beak was missing. If you’ve ever seen a toucan, you know how magnificent their beaks are. Those bills are also practical in the wild, helping the birds reach for food and regulate their body temperature.

Tieta got a 3D-printed plastic prosthesis in late July to repair her bill. The process of creating the prosthesis was intensive. Designers used a taxidermy toucan as a model and several prototypes were printed. The lightweight final design received a coat of nontoxic varnish and a castor-oil-based polymer for durability. Collaborators on the project included wildlife preservation group Instituto Vida Livre and the Federal University of Rio de Janiero.

It took Tieta three days to adjust to the repaired appendage, but she is now able to eat normally. “We were feeding her fruit and she was ignoring the new beak. But when we gave her live animals, like maggots and cockroaches, she ate normally immediately,” Instituto Vida Livre director Roched Seba told BBC News.

It’s not known how Tieta lost part of her bill. It could have been an accident in the wild or through mistreatment by wildlife smugglers. The bird will spend the rest of her life in the safety of an animal sanctuary.

cnet.com

by | August 25, 20153:32 PM PDT

3D printing – still quite a young space

http://bgr.com/2015/08/25/3d-printer-multimaterial-3d-printing-breakthrough/

3D Printer

Major technological advancement yields a printer that could change the face of 3D printing

While the technology has certainly generated plenty of buzz over the past few years, 3D printing is still quite a young space. Advancements in 3D printing are coming hot and heavy — just think about how affordable this technology is now, for example. Nearly anyone with a need for a 3D printer can now purchase one for just a few hundred dollars.

But affordability is hardly the only area where huge advancements are being made in 3D printing.

A group of engineers at the Massachusetts Institute of Technology have created a prototype of what may quite literally end up being a game changer for 3D printing.

“Multimaterial printing” is the term for a process whereby a 3D printer creates objects out of more than one material at a time. The most common use case involves colors — a printer might build 3D objects in two or three different colors at once, rather than forcing the user to create different colored piece separately and then assemble them.

Now, researchers at MIT’s Computer Science and Artificial Intelligence Laboratory have created a 3D printer with multimaterial support that can print with 10 different materials at once. Most interesting, perhaps, is the fact that the printer supports not just different colors, but also different plastics and metals.

So, with this new printer, users may be able to print fully assembled objects made of several different materials. But wait… it gets even better.

The team from MIT has managed to build machine vision into its new printer. Using this technology, the 3D printer can correct printing errors on its own, with no input needed from its operators. It can also scan objects that already exist and 3D print directly onto them or around them. For example, it can print circuit boards directly onto an object.

Or, as an extremely basic example, imaging placing your smartphone in the device and having it 3D print a protective case around it.

More information on the project, which is being spearheaded by MIT engineers Pitchaya Sitthi-Amorn, Javier E. Ramos, Yuwang Wang, Joyce Kwan, Justin Lan, Wenshou Wang and Wojciech Matusik, can be found by following the link below in our source section.

bgr.com

by  |

3D printed beef slices?

http://www.straitstimes.com/opinion/do-you-still-need-cows-if-you-can-3d-print-beef-slices

Do you still need cows, if you can 3D print beef slices?

Two scientists look at how Singapore is preparing to embrace two leading technologies – 3D printing and robotics.

Additive manufacturing (AM) or 3D printing, as it is more commonly known, is a term that is becoming more familiar, used not only by large corporations and institutions but also smaller enterprises and even individuals.

Simply put, 3D printing refers to processes that produce a 3D part from a computer-aided design model by adding materials successively, usually in a layer-by-layer fashion. These materials can be made of paper, plastic, metal or even organic materials such as tissue from cells.

3D printing in itself is not new. It has been used for over three decades, such as for printing out prototypes for designs or architectural works. But today, its usage has expanded beyond prototyping. Many industries and people now use 3D printing to make things they want, which include producing unmanned aerospace vehicles (UAVs) used in Aerospace and Defence.

As technology continues to develop and become more widespread, we are led to potentially discover new or more extensive benefits to society. In building and construction, the ability to print complicated design structures within a shorter time and with fewer resources would help to reduce housing shortage in countries like Singapore. Globally, this could also help disaster-struck countries to quickly rebuild affected communities.

Due to its game-changing potential, AM or 3D printing is forecast by The Economist magazine to be the third Industrial Revolution.

Today, manufacturers are already witnessing the positive impact of 3D printing technology in terms of enabling greater customisation while reducing costs and waste.

As products are manufactured on demand, this reduces tooling costs and the need to maintain a massive product inventory typical of traditional manufacturing methods.

From a business perspective, we also see companies evolving towards more flexible and cost-effective business models. Some may choose to focus solely on design and leave customers to manufacture the actual product. Conversely, smaller players can now manufacture their own products instead of relying on larger manufacturing chains. Along with lower investment costs and risks, this has opened doors and created opportunities for new entrants within the manufacturing field. These will shake up manufacturing as we know it today.

Companies that now produce spare parts or equipment for big manufacturers may find themselves squeezed out if the manufacturers find it more worthwhile to 3D print the parts themselves.

Shipping too can change, if ships carry their own 3D machines to print parts, or 3D print their own supplies, eliminating the need to stop at ports for repairs and resupplies.

Even space travel can be revolutionised: One exciting area of potential application is 3D printing in space, which can be used to produce necessities such as food as well as essential tools and spare parts necessary for extensive space missions.

Over the coming decades, 3D printing technology certainly has tremendous potential to revolutionise our next phase of development.

The promise of bioprinting – or the printing of live tissue – is immense. This potentially allows us to 3D print a new organ for transplant. Bioprinting has the eventual goal of improving the quality of life whether for transplant patients or for society at large.

It also has clear applications in food. After all, 3D printing allows us to produce meat for consumption by printing them with layers of animal tissue – without the need for animal husbandry or slaughter.

Bioprinting food will also minimise the risk of diseases such as mad cow disease or bird flu by eliminating the need to rear livestock for human consumption.

With the aim of empowering the average home user, the Blacksmith Group invented the Blacksmith Genesis, the world’s first 3D printer-cum-scanner. As compact as a home printer, the Blacksmith Genesis allows users to scan, edit and print any item up to 6,650 cubic cm in 3D easily. This user-friendly device enables users without much knowledge of 3D software to engineer their own products.

The Blacksmith Group is a spin-off from the Nanyang Technological University’s (NTU) newly established Singapore Centre for 3D Printing (SC3DP).

Supported by Singapore’s National Research Foundation, SC3DP was set up to drive research and collaboration towards growing Singapore’s 3D printing capabilities for the aerospace and defence, building and construction, marine and offshore and manufacturing industries.

Taking it one step further is 4D printing, which refers to the printing of three-dimensional materials with properties that will transform according to external or environmental stimuli, such as time, temperature or humidity.

Possible applications that would prove useful are using it to print the soles of shoes or sofas which can then be easily manipulated to fit the shapes and sizes of human bodies.

4D printing might also be useful for printing structures for transporting across dramatically different environments, such as from earth to space. In this case, imagine if we could print a piece of furniture in a compact format that can be subsequently assembled into a larger, complex structure in space.

Given the rate at which 3D printing technology is progressing, it is not difficult to envision that 50 years from now, we could be living in 3D printed houses, travelling on 3D printed airplanes, wearing 3D printed garments, consuming 3D printed food and much more.

The possibilities are limitless.

  • Professor Chua Chee Kai is the Executive Director, Singapore Centre for 3D Printing, at the School of Mechanical and Aerospace Engineering, Nanyang Technological University.

References:

straitstimes.com

http://www.straitstimes.com/opinion/do-you-still-need-cows-if-you-can-3d-print-beef-slices

3D printing helps China’s economy

http://www.scmp.com/tech/innovation/article/1852059/3d-printing-can-help-modernise-chinas-economy-premier-li-keqiang

A 3D printed building in Shaanxi. Chinese premier Li Keqiang has called for greater investment in the technology. Photo: SCMP Pictures

3D printing can help modernise China’s economy: premier Li Keqiang

The development of 3D printing technologies must be part of a push to modernise China’s economy, the country’s premier, Li Keqiang, said during a speech to the State Council.

Echoing his “Internet Plus” doctrine, Li said a new technological revolution is at hand, and China needs to promote entrepreneurship and innovation in order to maintain competitiveness in a global rush to “reindustrialise”.

His address to the State Council focused on accelerating the development of advanced manufacturing in China, touching on technologies ranging from the internet to industrial robotics and automated machinery.

Since assuming office in 2013, Li has stressed the need for economic reform and a “new normal” growth plan at a sustainable, albeit slower, pace of development. That plan has been rocked by volatility in the stock market in recent months as well as a sharp slowdown in economic growth and flagging demand.

During the address, Li stressed the importance of marrying information technology with traditional manufacturing – a key tenet of his “Internet Plus” strategy – and pointed to 3D printing as “representative of a disruptive technology in the manufacturing industry … which has transformed traditional conceptions and methods of manufacturing.”

Li further highlighted in his address weaknesses underlying the Chinese economy, pointing to weaknesses in innovation, low ‘value-added’ production, poor quality in managerial and sales services, which are further exacerbated by resource and environmental constraints.

The premier’s statements come as Chinese firms working on 3D printing in the construction sector have announced multiple recent successes.

In July, real estate development firm Zhuoda Group assembled a 3D printed 200 square metre home in three hours, having printed the materials over 10 days at a cost of US$400-480 per square metre.

Also this year, construction firm Winsun 3D printed around a dozen 60 square metre houses in one day at a cost of US$5,000 per house. The firm is also currently partnering with the UNited Arab Emirates National Innovation Committee to 3D print an office building in Dubai.

According to Winsun, 3D printing can decrease the material cost of construction by 60 per cent, labour costs by 80 per cent and cut construction time by 70 per cent. The process can also incorporate recycled construction waste into the printing.

scmp.com

by Tim Chen | Monday, 24 August, 2015, 11:53am

 

Will 3D printing in space allow us to build new worlds?

http://www.pbs.org/newshour/bb/will-3d-printing-space-allow-us-build-new-worlds/

Will 3D printing in space allow us to build new worlds?

So far, space travel is limited because we have to transport everything we need using rockets. But what if we could build whatever we needed? Jason Dunn, whose company built the first 3D printer to operate in space, shares his Brief but Spectacular take on the future of self-sufficiency in space travel.

TRANSCRIPT

GWEN IFILL: Now to our weekly feature Brief But Spectacular.

Tonight, we hear from Jason Dunn of Made In Space, a company based out of Singularity University, the California-based firm responsible for making the first 3-D printer to operate out of this world.

JASON DUNN, Made In Space: I think that, in our lifetime, everybody we know will have a chance to go to space.

It’s really hard to do space exploration today, because we are dependent on bringing everything on rockets from the surface of the planet. So, what we started working on was the idea of 3-D printing in space and in fact just building the things you need wherever you need it.

Today’s version of space exploration is like a camping trip. We bring everything we need with us, and, if something goes wrong, we go back home really quick or we call home and ask for some help.

So if we want to go live on Mars one day or go back to the moon and set up a base, we need to learn how to be self-sufficient in the way we explore space.

Figuring out how to make a 3-D printer work in zero gravity was one of the most difficult parts. We got to take our 3-D printers into an aircraft that flies acrobatic maneuvers in the sky. You get a little period of weightlessness and you actually float inside of the airplane.

Everything is falling into place that we can actually send people to Mars and to the moon and to the asteroids, that we can build entirely new worlds of our own like large space stations. And that’s really the vision, is that we have the entire universe at our disposal to go out and explore.

Growing up in Florida was — for me, it was a lot about exploration. I lived on the Gulf of Mexico. I had my own boat. I spent most of my days exploring mangrove swamps and estuaries and things like that.

Space is like the ocean that I grew up sitting on the edge of, and I feel like, as humanity, we’re on this — like, the surface of the planet, which is like the shore, and we’re ready to now finally go out and see what’s out in the ocean.

My name is Jason Dunn, and this is my Brief But Spectacular take on why our future will be made in space.

References:

pbs.org

http://www.pbs.org/newshour/bb/will-3d-printing-space-allow-us-build-new-worlds/

MIT’s glass 3D printer

http://gizmodo.com/watching-mits-glass-3d-printer-is-absolutely-mesmerizin-1725433454

Watching MIT's Glass 3D Printer Is Absolutely Mesmerizing

Watching MIT’s Glass 3D Printer Is Absolutely Mesmerizing

MIT’s Mediated Matter Group made a video showing off their first of its kind optically transparent glass printing process. It will soothe your soul.

Called G3DP (Glass 3D Printing) and developed in collaboration with MIT’s Glass Lab, the process is an additive manufacturing platform with dual heated chambers. The upper chamber is a “Kiln Cartridge,” operating at a mind-boggling 1900°F, while the lower chamber works to anneal (heat then cool in order to soften the glass). The special 3D printer is not creating glass from scratch, but rather working with the preexisting substance, then layering and building out fantastical shapes like a robot glassblower.

It’s wonderfully soothing to watch in action—and strangely delicious-looking. “Like warm frosting,” my colleague Andrew Liszewski confirmed. “Center of the Earth warm frosting.”

gizmodo.com

by Kaila Hale-Stern |  8/20/15 4:30pm

The world’s smallest phone charger

http://www.3ders.org/articles/20150819-3d-printing-helps-uk-designers-develop-the-nipper-the-worlds-smallest-phone-charger.html

3D printing helps UK designers develop The Nipper, ‘The World’s Smallest Phone Charger’

When considering that nearly everybody carries a smartphone these days – in addition to their keys and wallet – it makes perfect sense why so many designers and manufacturers have been actively designing accessories ranging from speakers and cases to stands and sleeves for the mobile devices.  However, the one problem that everybody runs into is also among one of the most difficult to solve: battery life.

Inspired by the need to create a portable, on-the-go power solution for smartphone users that doesn’t involve carrying bulky cases or powerpacks, designers Doug Stokes and Chris Tait of Design on Impulse in the UK recently created what they are calling “The World’s Smallest Phone Charger” – AKA “The Nipper”.

Consisting of two AA batteries and a magnet that reside on a user’s keyring (the batteries are only installed when in use), the 10 gram Nipper is capable of charging smartphones while users are out and about or perhaps most importantly – during an emergency situation.

“The Nipper was primarily designed for emergency use,” explain the designers.

“When all else fails, when all hope is lost – in situations where you desperately need to use your phone but have no access to laptops, electrical sockets, wind turbines or solar panels the Nipper will be there for you.”

The design of the Nipper contains 3 neodynium magnets that are responsible for both making an electrical connection to the circuit board as well as holding the batteries together.  According to the designers, the circuit is actually a “boost converter” that converts the power from the batteries into a 5v power supply to charge your phone.  For today’s modern smartphones, this means that the batteries can supply an additional 10% battery capacity in 30 minutes, and 20% in just over an hour.

Like so many other hardware developers today, Stokes and Tait turned to 3D printing to make their idea for the World’s Smallest Phone Charger real – and have put the concept on Kickstarter to help it gain some traction; already, the campaign has surpassed their $10K goal by more than $3K and it has three weeks left to go.

“If we’re making small volumes of Nippers, we’ll 3D print the cases out of high quality nylon, but if demand is high and we have to make a full Nipper army we’re going to injection mold the cases out of polypropylene,” says the designers.

“The two halves of the Nipper are connected by either fabric or genuine leather straps. The neodynium are nickel plated on the classic Nippers, and gold plated on the premium Nippers.”

While the concept is certainly impressive, the fact that Tait and Stokes just graduated school together and entered a national design competition to develop The Nipper makes the story all the more impressive.

“One moment we were doing our finals and the next we were in the centre of London, working on a product we’d come up with in our flat which we’d been given support to make into a reality,” said Stokes.

“A lot of people who have just graduated are spending the summer travelling or trying to find a job and move out of home. But being able to go straight from university to working in Somerset House every day, where you’ve got Parliament on one side and St Paul’s on the other, is pretty amazing.”

Considering that the device comes in a number of colors and will likely expand to include multiple strap options, the charger is likely to fit with anybody’s style similar to modern smartphone case designs.

For those interested, a ‘Classic Nipper’ can be purchased starting at just $23 over on Kickstarter.

3ders.org

by Simon | Aug 19, 2015

http://www.3ders.org/articles/20150819-3d-printing-helps-uk-designers-develop-the-nipper-the-worlds-smallest-phone-charger.html