3D printed parts for a car

http://www.stuff.co.nz/motoring/news/71751824/the-car-of-the-future-to-use-3d-printed-parts

Car parts could use 3D printing techniques in the future, according to BMW

The car of the future to use 3D printed parts

Car companies will soon make use of 3D printing to manufacture parts, bringing benefits in cost and strength that will improve the affordability and driving character of future vehicles, according to BMW’s head of lightweight design Florian Schek.

While most vehicle manufacturers use the advanced technology during the development and design phase to quickly create prototype parts or models, Schek believes it won’t be long before the technology is transferred into end-consumer production techniques.

He admitted that it is likely to be used on low-volume speciality vehicles first as the time needed to mass-produce parts by 3D printing is not as quick as conventional methods such as casting and forging for metals, or as affordable as plastics. But he said the rapid advances in the technology will ensure its future application is viable.

“We have that already in prototyping,” he told Drive.

“But there is definitely a future for it in mainstream production. It will come.

“I think it will take some time in high-volume production, but it is not that far away for specialist models like the i8. We can do some very interesting things with 3D printing that we cannot do with other methods and it is quite exciting about the benefits, both in terms of design and structure.”

Schek said the benefits of 3D printing structural elements – including major components such as shock absorber towers – could see improvements in weight reductions and rigidity, as the printing process could create components more intricately.

“With 3D printing we can see advantages in being able to build parts with strength where it is needed and not in places where it isn’t, and this will help improve decreasing weight. We can design the part according to the forces that are running through it, this will be a big step forward for some areas,” he told Drive during the launch of the all-new BMW 7-Series, which uses different materials in its skeleton – including steel, aluminium and carbon fibre – to reduce weight and increase overall strength.

“I can also see it eventually improving time to production in some circumstances too, because some components currently need to go through many processes to be ready for assembly whereas with 3D printing it is designed to be a finished product.”

stuff.co.nz

by ANDREW MACLEAN | 06:00, September 6 2015

6 futuristic 3D printed clothes!

http://www.engadget.com/2015/09/04/6-futuristic-3d-printed-clothes/

6 futuristic 3D-printed clothes

3D printing is revolutionizing the way we make things, from buildings and cars to medical devices. But that’s not all: Many forward-thinking designers in the fashion industry are using 3D printers to cut down on material waste and explore new possibilities for unique and exciting designs. Read on to learn about some of the most advanced 3D-printed clothes and wearables that they’ve cooked up.

References:

engadget.com

by Inhabitat | September 4th 2015 At 2:00pm

http://www.engadget.com/2015/09/04/6-futuristic-3d-printed-clothes/

Music of bronze-age and 3D printing

http://www.cnet.com/news/the-music-of-bronze-age-celts-revealed-through-3d-printing/

The music of bronze-age Celts revealed through 3D printing

A bronze artefact previously thought to have been the butt of a spear has been revealed to be the mouthpiece of an ancient horn.

Primitive music may not have been so primitive after all, as discovered by an archaeologist and Ph.D. candidate at the Australian National University College of Asia-Pacific. Billy Ó Foghlú, who believed that the bronze- and iron-age musical horns found in Ireland must have had mouthpieces, has 3D printed an object that vastly improves the sound of the instruments.

His research has been published in the ancient Celtic culture journal Emania.

The model for the mouthpiece, however, was something quite unexpected: a bronze artefact dating back to 100BC to 200AD called the Conical Spearbutt of Navan. Found in the early 20th century, the artefact (as the name suggests) was thought to have been mounted on the butt of a spear.

3D printing technology has been improving at a rapid pace in the past few years. While it has primarily been used for the manufacture of custom designed objects, it’s increasingly seeing use in the fields of paleontology and archaeology as a means of studying objects without damaging the fragile original artefacts. It’s also allowing museums to create replicas of artefacts that can be handled by the public.

In this case, the object wasn’t printed directly, but cast in a 3D printed mould. Using the exact measurements of the so-called Spearbutt, Ó Foghlú created a 3D model, which he then used 3D print the mould and cast the replica in bronze. He also created a 3D printed replica of a horn over two metres long, copying the thickness of the metal of the original object. He then put the two together and blew.

“Suddenly the instrument came to life,” he said in a statement.

“These horns were not just hunting horns or noisemakers. They were very carefully constructed and repaired, they were played for hours. Music clearly had a very significant role in the culture.”

The artefact would likely have been misclassified because it was excavated separately to the horns. Many iron- and bronze-age horns were discovered across Europe and Scandinavia, but very few mouthpieces were found in Ireland. This led to the impression that music in Ireland had regressed.

However, Ó Foghlú believes that so few mouthpieces were found with horns because they may have been ritually dismantled and separated when the horn’s owner died.

“A number of instruments have been found buried in bogs. The ritual killing of an instrument and depositing it in a burial site shows the full significance of it in the culture,” he said.

“Tutankhamen also had trumpets buried with him in Egypt. Contemporary horns were also buried in Scandinavia, Scotland and mainland Europe: They all had integral mouthpieces too.”

cnet.com

by  | September 1, 2015 7:47 PM PDT

 

Tattoos to 3D printing!

http://www.theguardian.com/healthcare-network/2015/sep/04/tattoos-to-3d-printing-five-inventions-that-will-revolutionise-healthcare

contact lens

Tattoos to 3D printing: five inventions that will revolutionise healthcare

Most people know they are sick or their health is at risk because of symptoms – pain, temperature, swelling, rash etc. These are the alarm bells that drive people to doctors. However, new epidemics like obesity and type 2 diabetes can start causing damage a long time before symptoms appear, and no alarms go off.

Today we can meet these challenges with new allies. Beyond the health and fitness uses, the new world of wearables (external surface sensors) and, in time, digestibles (nanoparticle sensors that can transmit information from within), offer the opportunity to restore control back to us. Advances in biotechnology as well as material science offer us alternatives never before dreamed possible.

Google’s smart contact lens
This contact lens has an embedded sensor that measures the glucose level in your tears every second and transmits that data to a device (ie a smartphone) where it can be displayed or transmitted to a medical professional. It can also change colour if glucose levels fall below or rise above specific levels. The limiting step at the moment is powering the device. Currently it includes a small antenna which is placed between two layers of glass along with the sensor but this has to be close to a power source.

Medical tattoos
Butterfly biostamps the size of a thumbnail measure sun exposure, and a medical stamp can measure motion, temperature, heart rate and perspiration, or oxygen saturation.

There’s a new version that can be placed directly on brain tissue to monitor epileptic seizures and one that can be draped around the heart helping better detect arrhythmias and give finer control to pacemakers. The latter would use the heart’s motion to convert the energy of muscular contraction into electrical energy.

The 2025 vision is that every baby in the developing world will be tagged with several biostamps at birth. One on the wrist or ankle would replace the hospital bracelet and allow nurses to monitor the baby’s heart rate, temperature respiratory rate and oxygenation.

At UC San Diego, they have created a different type of tattoo which currently lasts on the skin for about 24 hours, applying a very mild electrical current to the skin surface for 10 minutes forcing sodium ions to migrate towards the printed electrodes. A built-in sensor then interprets the strength of the charge generated to determine a person’s overall glucose levels. Two further refinements are needed to make this ready; at present it is not connected to a numeric read out, and they are working to extend the life beyond 24 hours.

Biological 3D printing
A team at Princeton printed a bionic ear and a team at Cambridge has printed retinal cells to form complex eye tissue. But Jennifer Lewis, a biological engineering professor at Harvard, has solved the dilemma of how to print tissues with full blood supply (essential if you are going to create functional replacement organs) and has taken her team closer to being able to print a full kidney (currently the most widely transported organ). Making complete organs requires even more complex structures but with new innovations we can look to a future where damaged or worn out organs, from kidneys to hearts, could be printed to precise design specifications.

Optogenetics
Various forms of direct stimulation to the brain (implanted electrodes, vagal nerve stimulation etc) have been used in a variety of situations including depression. Now there is the possibility to use encoded genetic proteins that change in the presence of light to stimulate areas of the brain non-invasively for a particular purpose. While initial approaches used methods to genetically alter cells that could result in cell destruction limiting their practical value, the University of Chicago has recently developed an alternative which uses tiny gold nanoparticles that allow the modification of cells using low-level infrared lights and which remain intact and effective within cells over the long term without hurting or damaging nearby cells. While still in its infancy, in the next 10 years we will see new approaches and even more refined procedures of central nervous stimulation used to do everything from enhance learning to treat depression.

Real-time physiological monitoring
A low-cost device with multiple sensors that could monitor heart rate, temperature, oxygen saturation, blood pressure, respiratory rate, fluid state, and glucose could provide a comprehensive output on the body’s dynamic health. While still in phased development, the first versions of such devices exist in the US and Switzerland. Couple their sensor capabilities with analytic data fusion software and you have real-time dynamic physiological data. No longer do I need to do an artificial stress test to see how your heart behaves under strain or what is most likely to push you into diabetic crisis. Now I can see that your heart’s function was pushed to extremes at 2pm on Thursday and 5pm on Friday. With a report of your body’s reaction to exercise, increased stress at work, overeating, episodic illness, lack of sleep, you can not only assess your vulnerability but understand what patterns in your life will most likely tip you over the edge. When I get up in the morning currently I know more about the state of my car than I do about my own health. With these technologies finally that is about to change.

theguardian.com

by David Whitehouse, Chief medical officer, UST Global | Friday 4 September 2015

3D printed hands for free

http://time.com/4016974/3d-printed-hands-e-nable/

See How Kids Are Getting 3D-printed Hands for Free

A global network of almost 6,000 volunteers is making it happen.

With standard prosthetic hands costing anywhere from several thousand to a hundred thousand dollars, convincing insurance companies to buy new hands and arms for growing kids every couple of months is an impossible task.

After watching a YouTube video about 3D-printed prosthetics, RIT professor Jon Schull had an idea. With one YouTube comment, he harnessed an online community of volunteers and problem-solvers to work toward one goal—providing free, 3D-printable prosthetics to kids in need.

Two years later, Schull has taken his idea and turned it into a global network of almost 6,000 volunteers. To date, the e-NABLE network has printed over 1,500 devices in 50 countries, and the network continues to grow at a rapid pace.

e-NABLE’s wrist and elbow actuated prosthetics cost only $30-$50 apiece, and require up to three days worth of printer time and assembly. Schull’s volunteers are matched with a child in need, and provide the customized, completed hand or arm at no cost to the child’s family. e-NABLE’s network is currently working on making the devices available in other countries, as well as printing the hands with different skin tones and with different materials that will make the hands look more similar to the human hand.

While e-NABLE’s volunteers are spawning new variations of hands and arms faster than he can keep up with, Schull hopes to be able to expand his model to help solve new problems. He sees heads-up displays, text-to speech translators, and even gene printing in e-NABLE’s future.

“I believe we… have proven that there are probably hundreds of thousands of digital humanitarians ready willing and able to lend a metaphorical hand for the global good,” Schull said. “And so the…goal is to figure out what iceberg this is the emerging tip of.”

time.com

by Julia Lull | Aug. 31, 2015

3D printed stormtrooper suit

http://3dprint.com/92613/3d-printed-stormtrooper-suit/

c7

Entire 3D Printed Star Wars Episode VII Stormtrooper Suit Shown off at PAX Prime By Barnacules

What’s the most highly anticipated movie the year? Of course it’s Star Wars Episode VII: The Force Awakens, the first movie in the series after Disney’s purchase of the rights to Star Wars from George Lucas in 2012. While Star Wars fans are certainly excited for the next episode, many are wondering just how well director J.J. Abrams will fare in his Star Wars debut on December 18th.

cfeat

Whether you are a Star Wars fan or not, since you’re at this site you likely are a fan of 3D printing, and what better way to enhance the excitement surrounding this upcoming film than with one of the more elaborate 3D printing projects we have seen in a while?

You may remember Jerry Berg, aka Barnacules, who is a bit of a YouTube sensation himself. Back at the end of last year, we partnered with Barnacules on a video in which he polished a handful of 3D printed bronzeFill ‘Bitcoins’ using various methods. Barnacules is now back to his old 3D printing habits, this time working with MyMiniFactory on a project which can only be described as awesome! Over the last several months, an entire Star Wars Episode VII Stormtrooper suit has been fabricated, which he has been chronicling on his YouTube channel over the last few months. After lots of printing, and some incredible design work on the part of MyMiniFactory, we are told that this suit is finally complete and will be officially unveiled at PAX Prime in Seattle this weekend by Barnacules himself.

The suit–which is the work of Lloyd Roberts, the lead designer on the project, who also happens to be one of MyMiniFactory’s most popular 3D designers–was created in pieces to specifically fit the build of Barnacules. Roberts was certainly not the only one who helped out on this mindblowingly awesome project. Another MyMiniFactory character artist named Francesco Orrù put his talents to use on the project as well, using Zbrush.

c8

While all the components making up the Stormtrooper suit have not been publicly released and have remained under wraps, MyMiniFactory has made two key parts of the costume available on their website for free download. The Stormtrooper helmet, designed by Roberts, with some special help from his friend Ricardo Salomao, is quite impressive and will certainly get all you Star Wars fans out there a bit more excited for the film’s December release. Additionally MyMiniFactory has made the Stormtrooper TFA blaster also available for download on their site. The weapon, which was designed by another very popular MyMiniFactory user, Kirby Downey, looks pretty spectacular if you ask me.

While we are sure that there will be plenty of quality images of the 3D printed suit over the next couple of days coming from PAX, we were able to obtain a handful of pictures so far, which you can see above as well as in the gallery below. Also we highly recommend following Barnacules’ YouTube channel where he is sure to show off the suit in its entirety very soon.

Let us know if you happened to attend PAX and bump into this Barnacules wearing this incredible piece of work. What did you think? Discuss in the 3D Printed Stormtrooper Suit forum thread on 3DPB.com.

c6 c5 c4

c3 c2

3dprint.com

by  | AUGUST 31, 2015

3D printed fashion collection

http://www.bloomberg.com/news/articles/2015-08-31/israeli-designer-danit-peleg-s-3d-printed-fashion-collection

Home-Made High Heels and Skirts 3D-Printed for Fashion Collection

No one before Israeli designer Danit Peleg has ever 3D-printed an entire fashion collection at home, but the 27-year-old has used small consumer 3D printers to create her graduate collection.

3D printing has been around for almost 30 years. Fashion designers like Iris van Herpen – one of Lady Gaga’s favourites – and Francis Bitonti brought it to the catwalks. But no one before Israeli designer Danit Peleg has 3D-printed an entire fashion collection at home.

The 27-year-old used only small consumer 3D printers to create her graduate collection. From red high heels to a long striped skirt, all the garments have been printed in small A4-size pieces and then glued together. The process is extremely time-consuming – some pieces took more than 300 hours to come to life – and therefore very expensive.

bloomberg.com

by  | August 31, 2015 — 8:30 AM CEST

Will 3D printing work on fitness gear?

http://www.shape.com/lifestyle/workout-clothes-gear/will-3d-printing-work-fitness-gear

Will 3D Printing Work on Fitness Gear?

Will 3D Printing Work on Fitness Gear?

The perfect sneakers, custom leggings—we asked an expert if the 3D printing technology trend could really change the fitness world.

Of all the crazy new advances in tech—new wearable technology that helps you break bad habits, computers you wear on your wrist (hello,Apple watch), even sportsbras that combine wearable tech and fitness gear—hearing about 3D-printed wellness gadgets are one of those things that makes us feel like we’re living in the future. You’re telling me that you can use a printer to make actual, physical objects? It sounds like something straight out of sci-fi.

And while hearing about 3Dprinted houses and makeup is cool, what we’re most interested in is how the new technology will change fitness. Imagine a world where you could 3D print the perfect pair of running shoes, custom molded to your foot, for example.

In fact, Nike, Brooks, and New Balance have all already dabbled in 3D-printed athletic shoes. And custom-printed shoe insoles will soon be on the market: SOLS ($125, sols.com) has you take measurements of your feet using their app, then prints you insoles in any one of a number of fabrics (leather for work shoes, something sweat-wicking for sneakers). Plus, they’re, a fraction of the cost of many orthotics. (Whether you wear insoles or not, you should definitely be stretching your feet post-workout.)

But footwear isn’t the only thing that can benefit from 3D printing. EXO-L is a company that’s creating custom-made ankle braces, designed to keep athletes safer on the field or court. Other companies are offering molded-to-you mouth guards. You can even buy specially fitted, never-slip-out-again headphones ($200, nrml.com). All these products use 3D printing technology for ultra-customized end products. The benefits go way beyond personal comfort, though: 3D printing enables doctors to create comfortable, affordable prosthetics for people missing limbs too. (Check out Team Unlimbited’s e-NABLE blog for more information.)

“3D-printed fitness gear has some serious pros, the most obvious of which is customization,” says Pieter Strikwerda, the co-CEO and founder of 3DPrinting.com. “But also it requires less production time from the idea to the finished product.”

Still, can 3D printed products really stand up to traditionally-made gear, especially higher-end products? Strikwerda says yes. “Printing techniques are getting better every day, and so are the materials being used,” he says. “Look at NASA—they’re using printing techniques to print metal parts for their engines, not only because it’s lighter and more efficient but also because those parts are stronger.” (This fitness equipment just looks like science fiction.)

That said, cautions Strikwerda, “the whole process of 3D modeling and scanning, choosing the right material, and so on is still really complex. It’s not a plug-and-play machine yet.” So we’re not quite at the point where we’ll be able to print out a spare pair of running shoes or fit-like-a-glove leggings from the comfort of our own homes. But until we get there, at least we can finally get our hands on ear buds that won’t slip out during our workout, and insoles that make our run feel better without breaking the bank. That feels pretty futuristic to us.

shape.com

by  | Aug 31, 2015

A brief history of 3D printing

http://ottawacitizen.com/news/local-news/the-evolution-of-3d-printing

A 3D printer used by a clinic in France to create skull and facial implants.

A brief history of 3D printing

On that evening, more than three decades ago, when he invented 3D printing, Chuck Hull called his wife.

She was already in her pyjamas, but he insisted that she drive to his lab to see the small, black plastic cup that he had just produced after 45 minutes of printing.

It was March 19, 1983. Hull was then an engineer working at a U.S. firm that coated furniture with a hard plastic veneer. As part of his work, he used photopolymers — acrylic-based liquids — that would solidify under ultraviolet light. Hull thought the same sort of process might be used to build a three-dimensional object from many thin layers of acrylic, hardened one after another, with targeted UV light from a laser beam.

Hull pursued his research on nights and weekends until finally sharing his eureka moment with his wife, Anntionette.

“I did it,” he told her simply.

Chuck Hull, inventor of the 3D printer

Hull took out a series of patents on his invention and went on to co-found a company, 3D Systems, that remains a leader in the field. Last year, the 75-year-old was inducted into the National Inventors Hall of Fame.

Hull’s invention launched a wave of innovation. Design engineers embraced 3D printers as the answer to their prayers: Instead of waiting weeks or months to have new parts produced, they could design them on computers and print prototypes the same day.

3D printers have since evolved and can now use all kinds of materials, including metals, ceramics, sugar, rubbers, plastics, chemicals, wax and living cells. It means designers can progress rapidly from concept to final product.

Advances in the printers’ speed, accuracy and versatility have made them attractive to researchers, profit-making firms and even do-it-yourselfers.

The cost of the machines has also dropped dramatically, which means it’s easy for home inventors to enter the field. Home Depot sells a desktop version for $1,699 while Amazon.com markets the DaVinci Junior 3D printer for $339.

The machines have been used to print shoes, jewellery, pizza, cakes, car parts, invisible braces, firearms, architectural models and fetal baby models (based on ultrasound images).

The wave of innovation triggered by the 3D printer is only now beginning to crest in the field of medicine. Researchers are racing to engineer implantable livers, kidneys and other body parts with the help of 3D printers.

In Canada, scientists are using 3D bioprinters as they work toward creating new limb joints made from a patient’s own tissue, and implantable skin for burn victims.

ottawacitizen.com

by Andrew Duffy | August 28, 2015 2:00 PM EDT

3D printed brain?

http://3dprint.com/92071/your-brain-on-3d-printing/

You can 3D print your own brain.

This Is Your Brain On 3D Printing

If you’ve been through the experience of having a complete MRI brain scan, and you’re not squeamish about such things, you might be interested in building a scale model 3D print of your brain itself.

That MRI scan data means you now have the option to print your brain.

meshlab brain scan file

As for that MRI scan, you’ll need the sort of scan free of surrounding structures, and a radiologist can create a range of scans and analysis for the various elements of tissues.

Why you’d do this without significant motivation is anyone’s guess, but author and editor Richard Baguley went that route. He says once you request DICOM data of your brain, it’s possible to ask for a CD which includes the various scans, or failing that, go straight to your doctor to make the request–as the patient, it’s within your purview to ask for these files.

DICOM, or Digital Images and Communications in Medicine, data represents an open format which can be utilized by a range of medical systems.

Magnetic Resonance Imaging itself is amazing technology which uses a powerful magnetic field to react with the atoms of the human body to create a radio signal, and by shaping the resulting magnetic field, the MRI can map and capture the structure of the brain and its varying tissues and blood vessels.

Image 807

Baguley says converting the images for 3D printing can be done via a host of free and open source software such as Slicerweb, Osirix, 3DSlicer and Invesialus. He uses InVesalius in his tutorial, finding it the most simple package to take on the task.

His step-by-step description of the process results in an .STL file, but he says there’s a bit of work left to be done after that. He uses MeshLab to clean up model up prepare for printing.

Brain Scan 3D Print

Ultimately, Baguley printed out his version of his brain via Cura and a Lulzbot TAZ 5 printer.

“I was quite pleased with how my print turned out. The convoluted texture of my grey matter was well captured and printed on the top of the brain, but the similar texture on the side wasn’t quite as clear,” Baguley says of the finished article. “That’s probably because of the way the scan was processed. I could get more detail on the side by using other scans and combining the results.”

He adds that with a satisfactory 3D model complete, he may well print it in a flexible plastic or laser-cut it from wood to produce an interesting ornament…because what do you really do with a 3D printed brain?

“Now I have the 3D model, the possibilities are endless. I could print it in flexible plastic to give my cats an amusing toy,” Baguley suggests cheekily. “I could laser-cut it out in wood to produce an interesting ornament. Or I could do a small print to have available the next time someone asks to speak to the brains of this organization….”

Baguley has been writing about technology for more than 20 years and his credits include work in Wired, Macworld, USA Today and Reviewed.com. You can read the exceptionally detailed documentation Baguley created for his Brain Printing Project here on Hackaday.

brain

3dprint.com

by  | AUGUST 28, 2015